Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 180
Filter
2.
Org Lett ; 26(26): 5560-5565, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38915176

ABSTRACT

An intermolecular nickel-catalyzed reductive 1,2-alkylarylation of acrylates with cyclopropylamine NHP esters and aryl iodides is reported. This operationally simple protocol provides direct access to 1-alkylcyclopropylamine scaffolds. The mild conditions are compatible with four-membered α-amino strained rings as well as five- and six-membered ring systems. The products undergo cyclization to access α-arylated spirocyclic γ-lactams─a motif present in several pharmaceuticals.

3.
Occup Environ Med ; 81(5): 225-231, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38769004

ABSTRACT

OBJECTIVES: To inform the potential human carcinogenicity of acrylonitrile, we estimate associations between acrylonitrile exposures and lung cancer mortality in US workers with the objectives of (1) assessing potential for healthy worker survivor bias and (2) adjusting for this bias while assessing the expected lung cancer mortality under different hypothetical occupational exposure limits on acrylonitrile exposure using the parametric g-formula. METHODS: We used data from a cohort of 25 460 workers at facilities making or using acrylonitrile in the USA. We estimated HRs to quantify associations between employment and lung cancer mortality, and exposure and leaving employment. Using the parametric g-formula, we estimated cumulative lung cancer mortality at hypothetical limits on acrylonitrile exposure. RESULTS: Recent and current employment was associated with lung cancer, and exposure was associated with leaving employment, indicating potential for healthy worker survivor bias. Relative to no intervention, reducing the historical exposure under limits of 2.0, 1.0 and 0.45 parts per million would have been expected to reduce lung cancer mortality by age 90 by 4.46 (95% CI 0.78 to 8.15), 5.03 (95% CI 0.96 to 9.11) and 6.45 (95% CI 2.35 to 10.58) deaths per 1000 workers, respectively. A larger lung cancer mortality reduction would be expected under elimination of exposure: 7.21 (95% CI 2.72 to 11.70) deaths per 1000 workers. CONCLUSIONS: Healthy worker survivor bias likely led to underestimation of excess risk. Our results corroborate previous study findings of an excess hazard of lung cancer among the highest exposed workers.


Subject(s)
Acrylonitrile , Lung Neoplasms , Occupational Diseases , Occupational Exposure , Humans , Lung Neoplasms/mortality , Occupational Exposure/adverse effects , Male , Female , Middle Aged , Occupational Diseases/mortality , Adult , United States/epidemiology , Cohort Studies , Aged , Bias , Healthy Worker Effect
4.
Environ Health Perspect ; 131(8): 87002, 2023 08.
Article in English | MEDLINE | ID: mdl-37549095

ABSTRACT

BACKGROUND: The Diesel Exhaust in Miners Study (DEMS) was an important contributor to the International Agency for Research on Cancer reclassification of diesel exhaust as a Group I carcinogen and subsequent risk assessment. We extended the DEMS cohort follow-up by 18 y and the nested case-control study to include all newly identified lung cancer deaths and matched controls (DEMS II), nearly doubling the number of lung cancer deaths. OBJECTIVE: Our purpose was to characterize the exposure-response relationship with a focus on the effects of timing of exposure and exposure cessation. METHODS: We conducted a case-control study of lung cancer nested in a cohort of 12,315 workers in eight nonmetal mines (376 lung cancer deaths, 718 controls). Controls were selected from workers who were alive when the case died, individually matched on mine, sex, race/ethnicity, and birth year (within 5 y). Based on an extensive historical exposure assessment, we estimated respirable elemental carbon (REC), an index of diesel exposure, for each cohort member. Odds ratios (ORs) were estimated by conditional regression analyses controlling for smoking and other confounders. To evaluate time windows of exposure, we evaluated the joint OR patterns for cumulative REC within each of four preselected exposure time windows, <5, 5-9, 10-19, and ≥20 y prior to death/reference date, and we evaluated the interaction of cumulative exposure across time windows under additive and multiplicative forms for the joint association. RESULTS: ORs increased with increasing 15-y lagged cumulative exposure, peaking with a tripling of risk for exposures of ∼950 to<1,700 µg/m3-y [OR=3.23; 95% confidence interval (CI): 1.47, 7.10], followed by a plateau/decline among the heavily exposed (OR=1.85; 95% CI: 0.85, 4.04). Patterns of risk by cumulative REC exposure varied across four exposure time windows (phomogeneity<0.001), with ORs increasing for exposures accrued primarily 10-19 y prior to death (ptrend<0.001). Results provided little support for a waning of risk among workers whose exposures ceased for ≥20 y. CONCLUSION: DEMS II findings provide insight into the exposure-response relationship between diesel exhaust and lung cancer mortality. The pronounced effect of exposures occurring in the window 10-19 y prior to death, the sustained risk 20 or more years after exposure ceases, and the plateau/decline in risk among the most heavily exposed provide direction for future research on the mechanism of diesel-induced carcinogenesis in addition to having important implications for the assessment of risk from diesel exhaust by regulatory agencies. https://doi.org/10.1289/EHP11980.


Subject(s)
Air Pollutants, Occupational , Lung Neoplasms , Occupational Exposure , Humans , Case-Control Studies , Occupational Exposure/analysis , Air Pollutants, Occupational/toxicity , Vehicle Emissions/toxicity , Vehicle Emissions/analysis , Lung Neoplasms/chemically induced , Lung Neoplasms/epidemiology
5.
Environ Health Perspect ; 131(8): 87003, 2023 08.
Article in English | MEDLINE | ID: mdl-37549097

ABSTRACT

BACKGROUND: With the exception of lung cancer, the health effects associated with diesel exhaust for other cancers and nonmalignant health outcomes are not well understood. OBJECTIVES: We extended the mortality follow-up of the Diesel Exhaust in Miners Study, a cohort study of 12,315 workers, by 18 y (ending 31 December 2015), more than doubling the number of observed deaths to n=4,887, to evaluate associations between mortality and diesel exhaust exposure. METHODS: Quantitative estimates of historical exposure to respirable elemental carbon (REC), a surrogate for diesel exhaust, were created for all jobs, by year and facility, using measurements collected from each mine, as well as historical measurements. Standardized mortality ratios (SMRs) and hazard ratios (HRs) were estimated for the entire cohort and by worker location (surface, underground). RESULTS: We observed an excess of death for cancers of the lung, trachea, and bronchus (n=409; SMR=1.24; 95% CI: 1.13, 1.37). Among workers who ever worked underground, where the majority of diesel exposure occurred, excess deaths were evident for lung, trachea, and bronchus cancers (n=266; SMR=1.26; 95% CI: 1.11, 1.42). Several nonmalignant diseases were associated with excess mortality among workers ever-employed underground, including ischemic heart disease (SMR=1.08; 95% CI: 1.00, 1.16), cerebrovascular disease (SMR=1.22; 95% CI: 1.04, 1.43), and nonmalignant diseases of the respiratory system (SMR=1.13; 95% CI: 1.01, 1.26). Continuous 15-y lagged cumulative REC exposure <1,280 µg/m3-y was associated with increased lung cancer risk (HR=1.93; 95% CI: 1.24, 3.03), but the risk declined at the highest exposures (HR=1.29; 95% CI: 0.74, 2.26). We also observed a significant trend in non-Hodgkin lymphoma (NHL) risk with increasing 20-y lagged cumulative REC (HRTertile3 vs. Tertile1=3.12; 95% CI: 1.00, 9.79; p-trend=0.031). DISCUSSION: Increased risks of lung cancer mortality observed in the original study were sustained. Observed associations between diesel exposure and risk of death from NHL and the excesses in deaths for diseases of the respiratory and cardiovascular system, including ischemic heart disease and cerebrovascular disease, warrant further study and provide evidence of the potential widespread public health impact of diesel exposure. https://doi.org/10.1289/EHP12840.


Subject(s)
Air Pollutants, Occupational , Lung Neoplasms , Myocardial Ischemia , Occupational Exposure , Humans , Occupational Exposure/analysis , Vehicle Emissions/analysis , Cohort Studies , Cause of Death
6.
Article in English | MEDLINE | ID: mdl-37443296

ABSTRACT

BACKGROUND: Burning/flaring of oil/gas during the Deepwater Horizon oil spill response and cleanup (OSRC) generated high concentrations of fine particulate matter (PM2.5). Personnel working on the water during these activities may have inhaled combustion products. Neurologic effects of PM2.5 have been reported previously but few studies have examined lasting effects following disaster exposures. The association of brief, high exposures and adverse effects on sensory and motor nerve function in the years following exposure have not been examined for OSRC workers. OBJECTIVES: We assessed the relationship between exposure to burning/flaring-related PM2.5 and measures of sensory and motor nerve function among OSRC workers. METHODS: PM2.5 concentrations were estimated from Gaussian plume dispersion models and linked to self-reported work histories. Quantitative measures of sensory and motor nerve function were obtained 4-6 years after the disaster during a clinical exam restricted to those living close to two clinics in Mobile, AL or New Orleans, LA (n = 3401). We obtained covariate data from a baseline enrollment survey and a home visit, both in 2011-2013. The analytic sample included 1186 participants. RESULTS: We did not find strong evidence of associations between exposure to PM2.5 and sensory or motor nerve function, although there was a suggestion of impairment based on single leg stance among individuals with high exposure to PM2.5. Results were generally consistent whether we examined average or cumulative maximum exposures or removed individuals with the highest crude oil exposures to account for co-pollutant confounding. There was no evidence of exposure-response trends. IMPACT STATEMENT: Remediating environmental disasters is essential for long-term human and environmental health. During the Deepwater Horizon oil spill disaster, burning and flaring of oil and gas were used to remove these pollutants from the environment, but led to potentially high fine particulate matter exposures for spill response workers working on the water. We investigate the potential adverse effects of these exposures on peripheral nerve function; understanding the potential health harm of remediation tactics is necessary to inform future clean up approaches and protect human health.

7.
Environ Health Perspect ; 131(5): 57006, 2023 05.
Article in English | MEDLINE | ID: mdl-37224072

ABSTRACT

BACKGROUND: During the 2010 Deepwater Horizon (DWH) disaster, response and cleanup workers were potentially exposed to toxic volatile components of crude oil. However, to our knowledge, no study has examined exposure to individual oil spill-related chemicals in relation to cardiovascular outcomes among oil spill workers. OBJECTIVES: Our aim was to investigate the association of several spill-related chemicals [benzene, toluene, ethylbenzene, xylene, n-hexane (BTEX-H)] and total hydrocarbons (THC) with incident coronary heart disease (CHD) events among workers enrolled in a prospective cohort. METHODS: Cumulative exposures to THC and BTEX-H across the cleanup period were estimated via a job-exposure matrix that linked air measurement data with self-reported DWH spill work histories. We ascertained CHD events following each worker's last day of cleanup work as the first self-reported physician-diagnosed myocardial infarction (MI) or a fatal CHD event. We estimated hazard ratios (HR) and 95% confidence intervals for the associations of exposure quintiles (Q) with risk of CHD. We applied inverse probability weights to account for bias due to confounding and loss to follow-up. We used quantile g-computation to assess the joint effect of the BTEX-H mixture. RESULTS: Among 22,655 workers with no previous MI diagnoses, 509 experienced an incident CHD event through December 2019. Workers in higher quintiles of each exposure agent had increased CHD risks in comparison with the referent group (Q1) of that agent, with the strongest associations observed in Q5 (range of HR=1.14-1.44). However, most associations were nonsignificant, and there was no evidence of exposure-response trends. We observed stronger associations among ever smokers, workers with ≤high school education, and workers with body mass index <30 kg/m2. No apparent positive association was observed for the BTEX-H mixture. CONCLUSIONS: Higher exposures to volatile components of crude oil were associated with modest increases in risk of CHD among oil spill workers, although we did not observe exposure-response trends. https://doi.org/10.1289/EHP11859.


Subject(s)
Coronary Disease , Myocardial Infarction , Petroleum Pollution , Petroleum , Humans , Petroleum Pollution/adverse effects , Follow-Up Studies , Prospective Studies , Coronary Disease/chemically induced , Coronary Disease/epidemiology , Benzene
8.
Environ Res ; 231(Pt 1): 116069, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37149022

ABSTRACT

BACKGROUND: During the 2010 Deepwater Horizon (DWH) disaster, oil spill response and cleanup (OSRC) workers were exposed to toxic volatile components of crude oil. Few studies have examined exposure to individual volatile hydrocarbon chemicals below occupational exposure limits in relation to neurologic function among OSRC workers. OBJECTIVES: To investigate the association of several spill-related chemicals (benzene, toluene, ethylbenzene, xylene, n-hexane, i.e., BTEX-H) and total petroleum hydrocarbons (THC) with neurologic function among DWH spill workers enrolled in the Gulf Long-term Follow-up Study. METHODS: Cumulative exposure to THC and BTEX-H across the oil spill cleanup period were estimated using a job-exposure matrix that linked air measurement data to detailed self-reported DWH OSRC work histories. We ascertained quantitative neurologic function data via a comprehensive test battery at a clinical examination that occurred 4-6 years after the DWH disaster. We used multivariable linear regression and modified Poisson regression to evaluate relationships of exposures (quartiles (Q)) with 4 neurologic function measures. We examined modification of the associations by age at enrollment (<50 vs. ≥50 years). RESULTS: We did not find evidence of adverse neurologic effects from crude oil exposures among the overall study population. However, among workers ≥50 years of age, several individual chemical exposures were associated with poorer vibrotactile acuity of the great toe, with statistically significant effects observed in Q3 or Q4 of exposures (range of log mean difference in Q4 across exposures: 0.13-0.26 µm). We also observed suggestive adverse associations among those ≥ age 50 years for tests of postural stability and single-leg stance, although most effect estimates did not reach thresholds of statistical significance (p < 0.05). CONCLUSIONS: Higher exposures to volatile components of crude oil were associated with modest deficits in neurologic function among OSRC workers who were age 50 years or older at study enrollment.


Subject(s)
Disasters , Petroleum Pollution , Petroleum , Humans , Middle Aged , Petroleum Pollution/adverse effects , Follow-Up Studies , Hydrocarbons/toxicity , Petroleum/toxicity
9.
J Occup Environ Med ; 65(7): 595-604, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37015736

ABSTRACT

OBJECTIVE: The aim of this study was to investigate whether risk estimates for childhood acute lymphoblastic leukemia change when restricting model comparison groups to "nonpesticide exposure" (NPE10) households. METHODS: Cases ( n = 1810) 15 years or younger were identified through Children's Cancer Group institutions between 1989 and 1993 and age-/sex-matched to controls ( n = 1951). Household pesticide use during pregnancy/month prior was collected via telephone. NPE10 comparison group reporting no parental exposure to 10 pesticide classes was identified. RESULTS: Adjusted odds ratios increased from 15% to 49% when limiting the comparison to NPE10. Maternal termite insecticide exposure was associated with greatest risk (adjusted odds ratio, 4.21; 95% confidence interval, 2.00-8.88). There was minimal evidence of interaction by child sex or occupational pesticide exposure, and no monotonic dose-response pattern with frequency of use (times per year). CONCLUSIONS: Elevated risks are consistent with published pooled-/meta-analyses and DNA damage. The consistency and magnitude of these associations warrant product labeling, exposure reduction interventions, or both.


Subject(s)
Pesticides , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Prenatal Exposure Delayed Effects , Child , Male , Pregnancy , Female , Humans , Infant , Prenatal Exposure Delayed Effects/chemically induced , Prenatal Exposure Delayed Effects/epidemiology , Pesticides/toxicity , Risk Factors , Paternal Exposure/adverse effects , Maternal Exposure/adverse effects , Precursor Cell Lymphoblastic Leukemia-Lymphoma/chemically induced , Precursor Cell Lymphoblastic Leukemia-Lymphoma/epidemiology , Case-Control Studies
10.
Environ Res ; 217: 114841, 2023 01 15.
Article in English | MEDLINE | ID: mdl-36403648

ABSTRACT

BACKGROUND: During the 2010 Deepwater Horizon (DWH) disaster, in-situ burning and flaring were conducted to remove oil from the water. Workers near combustion sites were potentially exposed to burning-related fine particulate matter (PM2.5). Exposure to PM2.5 has been linked to increased risk of coronary heart disease (CHD), but no study has examined the relationship among oil spill workers. OBJECTIVES: To investigate the association between estimated PM2.5 from burning/flaring of oil/gas and CHD risk among the DWH oil spill workers. METHODS: We included workers who participated in response and cleanup activities on the water during the DWH disaster (N = 9091). PM2.5 exposures were estimated using a job-exposure matrix that linked modelled PM2.5 concentrations to detailed DWH spill work histories provided by participants. We ascertained CHD events as the first self-reported physician-diagnosed CHD or a fatal CHD event that occurred after each worker's last day of burning exposure. We estimated hazard ratios (HR) and 95% confidence intervals (95%CI) for the associations between categories of average or cumulative daily maximum PM2.5 exposure (versus a referent category of water workers not near controlled burning) and subsequent CHD. We assessed exposure-response trends by examining continuous exposure parameters in models. RESULTS: We observed increased CHD hazard among workers with higher levels of average daily maximum exposure (low vs. referent: HR = 1.26, 95% CI: 0.93, 1.70; high vs. referent: HR = 2.11, 95% CI: 1.08, 4.12; per 10 µg/m3 increase: HR = 1.10, 95% CI: 1.02, 1.19). We also observed suggestively elevated HRs among workers with higher cumulative daily maximum exposure (low vs. referent: HR = 1.19, 95% CI: 0.68, 2.08; medium vs. referent: HR = 1.38, 95% CI: 0.88, 2.16; high vs. referent: HR = 1.44, 95% CI: 0.96, 2.14; per 100 µg/m3-d increase: HR = 1.03, 95% CI: 1.00, 1.05). CONCLUSIONS: Among oil spill workers, exposure to PM2.5 from flaring/burning of oil/gas was associated with increased risk of CHD.


Subject(s)
Coronary Disease , Disasters , Petroleum Pollution , Humans , Petroleum Pollution/adverse effects , Particulate Matter/analysis , Follow-Up Studies , Coronary Disease/chemically induced , Coronary Disease/epidemiology , Environmental Exposure
11.
Environ Int ; 167: 107433, 2022 09.
Article in English | MEDLINE | ID: mdl-35921771

ABSTRACT

RATIONALE: The 2010 Deepwater Horizon (DWH) oil spill response and cleanup (OSRC) workers were exposed to airborne total hydrocarbons (THC), benzene, toluene, ethylbenzene, o-, m-, and p-xylenes and n-hexane (BTEX-H) from crude oil and PM2.5 from burning/flaring oil and natural gas. Little is known about asthma risk among oil spill cleanup workers. OBJECTIVES: We assessed the relationship between asthma and several oil spill-related exposures including job classes, THC, individual BTEX-H chemicals, the BTEX-H mixture, and PM2.5 using data from the Gulf Long-Term Follow-up (GuLF) Study, a prospective cohort of 24,937 cleanup workers and 7,671 nonworkers following the DWH disaster. METHODS: Our analysis largely focused on the 19,018 workers without asthma before the spill who had complete exposure, outcome, and covariate information. We defined incident asthma 1-3 years following exposure using both self-reported wheeze and self-reported physician diagnosis of asthma. THC and BTEX-H were assigned to participants based on measurement data and work histories, while PM2.5 used modeled estimates. We used modified Poisson regression to estimate risk ratios (RR) and 95% confidence intervals (CIs) for associations between spill-related exposures and asthma and a quantile-based g-computation approach to explore the joint effect of the BTEX-H mixture on asthma risk. RESULTS: OSRC workers had greater asthma risk than nonworkers (RR: 1.60, 95% CI: 1.38, 1.85). Higher estimated THC exposure levels were associated with increased risk in an exposure-dependent manner (linear trend test p < 0.0001). Asthma risk also increased with increasing exposure to individual BTEX-H chemicals and the chemical mixture: A simultaneous quartile increase in the BTEX-H mixture was associated with an increased asthma risk of 1.45 (95% CI: 1.35,1.55). With fewer cases, associations were less apparent for physician-diagnosed asthma alone. CONCLUSIONS: THC and BTEX-H were associated with increased asthma risk defined using wheeze symptoms as well as a physician diagnosis.


Subject(s)
Asthma , Petroleum Pollution , Petroleum , Humans , Asthma/epidemiology , Benzene/analysis , Hydrocarbons/analysis , Particulate Matter/adverse effects , Particulate Matter/analysis , Petroleum/adverse effects , Petroleum Pollution/adverse effects , Petroleum Pollution/analysis , Prospective Studies
12.
Ann Work Expo Health ; 66(Suppl 1): i23-i55, 2022 04 07.
Article in English | MEDLINE | ID: mdl-35390128

ABSTRACT

In the GuLF Study, a study investigating possible adverse health effects associated with work on the oil spill response and clean-up (OSRC) following the Deepwater Horizon disaster in the Gulf of Mexico, we used a job-exposure matrix (JEM) approach to estimate exposures. The JEM linked interview responses of study participants to measurement data through exposure groups (EGs). Here we describe a systematic process used to develop transparent and precise EGs that allowed characterization of exposure levels among the large number of OSRC activities performed across the Gulf of Mexico over time and space. EGs were identified by exposure determinants available to us in our measurement database, from a substantial body of other spill-related information, and from responses provided by study participants in a detailed interview. These determinants included: job/activity/task, vessel and type of vessel, weathering of the released oil, area of the Gulf of Mexico, Gulf coast state, and time period. Over 3000 EGs were developed for inhalation exposure and applied to each of 6 JEMs of oil-related substances (total hydrocarbons, benzene, toluene, ethylbenzene, total xylene, and n-hexane). Subsets of those EGs were used for characterization of exposures to dispersants, particulate matter, and oil mist. The EGs allowed assignment to study participants of exposure estimates developed from measurement data or from estimation models through linkage in the JEM for the investigation of exposure-response relationships.


Subject(s)
Disasters , Occupational Exposure , Petroleum Pollution , Humans , Hydrocarbons , National Institute of Environmental Health Sciences (U.S.) , Petroleum Pollution/adverse effects , United States
13.
Ann Work Expo Health ; 66(Suppl 1): i188-i202, 2022 04 07.
Article in English | MEDLINE | ID: mdl-35390130

ABSTRACT

The April 2010 Deepwater Horizon drilling unit explosion at the Macondo oil well resulted in the release of approximately 779 million l of oil into the Gulf of Mexico. As part of the response effort to break up oil slicks on the water's surface, 6.81 million l of chemical dispersants COREXIT™ EC9500A and COREXIT™ EC9527A were applied by plane or vessel or injected near the seabed. The GuLF Long-term Follow-up Study is investigating possible adverse health effects of workers involved in the oil spill response and clean-up (OSRC). In this paper, we describe potential dispersant-related air concentrations generated from aerial spraying of dispersants to provide insight as to what concentrations OSRC workers may have been exposed under worst-case conditions. Personal exposure measurement data were not collected. Modeling, therefore, was conducted to estimate airborne concentrations of total aerosol to COREXIT™ EC9527A and EC9500A. Using the AgDISP model, we estimated air concentrations to dispersant total aerosols, defined as all components of the dispersant including active ingredients, surfactants, and water, resulting from aerial and vessel applications, as average 1-h and 2-min concentrations. For comparison, 1-h air concentrations associated with aerial spraying were estimated using another model, AERMOD. At 152 m horizontal to the flight path, average 1-h total aerosol concentrations associated with aerial applications were estimated to be as high as 49.3 µg m-3 (9527A) and 45.4 µg m-3 (9500A), and both decreased with increased distance from the flight line. The estimates for spraying 9500A from vessels indicated that total aerosol concentrations were potentially as high as 0.33 µg m-3 at 10 m from the nozzles. These results suggest that personal exposures to dispersant aerosols were negligible.


Subject(s)
Occupational Exposure , Petroleum Pollution , Water Pollutants, Chemical , Aerosols , Follow-Up Studies , Humans , Occupational Exposure/adverse effects , Petroleum Pollution/analysis , Water , Water Pollutants, Chemical/analysis
14.
Ann Work Expo Health ; 66(Suppl 1): i3-i22, 2022 04 07.
Article in English | MEDLINE | ID: mdl-35390131

ABSTRACT

The GuLF Study is investigating adverse health effects from work on the response and clean-up after the Deepwater Horizon explosion and oil release. An essential and necessary component of that study was the exposure assessment. Bayesian statistical methods and over 135 000 measurements of total hydrocarbons (THC), benzene, ethylbenzene, toluene, xylene, and n-hexane (BTEX-H) were used to estimate inhalation exposures to these chemicals for >3400 exposure groups (EGs) formed from three exposure determinants: job/activity/task, location, and time period. Recognized deterministic models were used to estimate airborne exposures to particulate matter sized 2.5 µm or less (PM2.5) and dispersant aerosols and vapors. Dermal exposures were estimated for these same oil-related substances using a model modified especially for this study from a previously published model. Exposures to oil mist were assessed using professional judgment. Estimated daily THC arithmetic means (AMs) were in the low ppm range (<25 ppm), whereas BTEX-H exposures estimates were generally <1000 ppb. Potential 1-h PM2.5 air concentrations experienced by some workers may have been as high as 550 µg m-3. Dispersant aerosol air concentrations were very low (maximum predicted 1-h concentrations were generally <50 µg m-3), but vapor concentrations may have exceeded occupational exposure excursion guidelines for 2-butoxyethanol under certain circumstances. The daily AMs of dermal exposure estimates showed large contrasts among the study participants. The estimates are being used to evaluate exposure-response relationships in the GuLF Study.


Subject(s)
Occupational Exposure , Petroleum Pollution , Humans , Bayes Theorem , Hydrocarbons/analysis , Occupational Exposure/adverse effects , Particulate Matter , Petroleum Pollution/adverse effects
15.
JAMA Netw Open ; 5(2): e220108, 2022 02 01.
Article in English | MEDLINE | ID: mdl-35195699

ABSTRACT

Importance: Exposure to hydrocarbons, fine particulate matter (PM2.5), and other chemicals from the April 20, 2010, Deepwater Horizon disaster may be associated with increased blood pressure and newly detected hypertension among oil spill response and cleanup workers. Objective: To determine whether participation in cleanup activities following the disaster was associated with increased risk of developing hypertension. Design, Setting, and Participants: This cohort study was conducted via telephone interviews and in-person home exams. Participants were 6846 adults who had worked on the oil spill cleanup (workers) and 1505 others who had completed required safety training but did not do cleanup work (nonworkers). Eligible participants did not have diagnosed hypertension at the time of the oil spill. Statistical analyses were performed from June 2018 to December 2021. Exposures: Engagement in cleanup activities following the Deepwater Horizon oil spill disaster, job classes, quintiles of cumulative total hydrocarbons exposure level, potential exposure to burning or flaring oil, and estimated PM2.5 were examined. Main Outcomes and Measures: Systolic and diastolic blood pressure measurements were collected during home exams from 2011 to 2013 using automated oscillometric monitors. Newly detected hypertension was defined as antihypertensive medication use or elevated blood pressure since the spill. Log binomial regression was used to calculate prevalence ratios (PR) and 95% CIs for associations between cleanup exposures and hypertension. Multivariable linear regression was used to estimate exposure effects on continuous blood pressure levels. Results: Of 8351 participants included in this study, 6484 (77.6%) were male, 517 (6.2%) were Hispanic, 2859 (34.2%) were non-Hispanic Black, and 4418 (52.9%) were non-Hispanic White; the mean (SD) age was 41.9 (12.5) years at enrollment. Among workers, the prevalence of newly detected hypertension was elevated in all quintiles (Q) of cumulative total hydrocarbons above the first quintile (PR for Q3, 1.29 [95% CI, 1.13-1.46], PR for Q4, 1.25 [95% CI, 1.10-1.43], and PR for Q5, 1.31 [95% CI, 1.15-1.50]). Both exposure to burning and/or flaring oil and gas (PR, 1.16 [95% CI, 1.02-1.33]) and PM2.5 from burning (PR, 1.26 [95% CI, 0.89-1.71]) for the highest exposure category were associated with increased risk of newly detected hypertension, as were several types of oil spill work including cleanup on water (PR, 1.34 [95% CI, 1.08-1.66]) and response work (PR, 1.51 [95% CI, 1.20-1.90]). Conclusions and Relevance: Oil spill exposures were associated with newly detected hypertension after the Deepwater Horizon disaster. These findings suggest that blood pressure screening should be considered for workers with occupational hydrocarbon exposures.


Subject(s)
Disasters , Hypertension/epidemiology , Occupational Exposure/statistics & numerical data , Petroleum Pollution/statistics & numerical data , Adult , Blood Pressure/physiology , Cohort Studies , Environmental Restoration and Remediation , Female , Humans , Male , Middle Aged
16.
Environ Health Perspect ; 130(2): 27001, 2022 02.
Article in English | MEDLINE | ID: mdl-35103485

ABSTRACT

BACKGROUND: During the 2010 Deepwater Horizon (DWH) disaster, controlled burning was conducted to remove oil from the water. Workers near combustion sites were potentially exposed to increased fine particulate matter [with aerodynamic diameter ≤2.5µm (PM2.5)] levels. Exposure to PM2.5 has been linked to decreased lung function, but to our knowledge, no study has examined exposure encountered in an oil spill cleanup. OBJECTIVE: We investigated the association between estimated PM2.5 only from burning/flaring of oil/gas and lung function measured 1-3 y after the DWH disaster. METHODS: We included workers who participated in response and cleanup activities on the water during the DWH disaster and had lung function measured at a subsequent home visit (n=2,316). PM2.5 concentrations were estimated using a Gaussian plume dispersion model and linked to work histories via a job-exposure matrix. We evaluated forced expiratory volume in 1 s (FEV1; milliliters), forced vital capacity (FVC; milliliters), and their ratio (FEV1/FVC; %) in relation to average and cumulative daily maximum exposures using multivariable linear regressions. RESULTS: We observed significant exposure-response trends associating higher cumulative daily maximum PM2.5 exposure with lower FEV1 (p-trend=0.04) and FEV1/FVC (p-trend=0.01). In comparison with the referent group (workers not involved in or near the burning), those with higher cumulative exposures had lower FEV1 [-166.8mL, 95% confidence interval (CI): -337.3, 3.7] and FEV1/FVC (-1.7, 95% CI: -3.6, 0.2). We also saw nonsignificant reductions in FVC (high vs. referent: -120.9, 95% CI: -319.4, 77.6; p-trend=0.36). Similar associations were seen for average daily maximum PM2.5 exposure. Inverse associations were also observed in analyses stratified by smoking and time from exposure to spirometry and when we restricted to workers without prespill lung disease. CONCLUSIONS: Among oil spill workers, exposure to PM2.5 specifically from controlled burning of oil/gas was associated with significantly lower FEV1 and FEV1/FVC when compared with workers not involved in burning. https://doi.org/10.1289/EHP8930.


Subject(s)
Air Pollutants , Petroleum Pollution , Air Pollutants/analysis , Environmental Exposure/analysis , Forced Expiratory Volume , Humans , Lung , Particulate Matter/analysis , Petroleum Pollution/adverse effects , Petroleum Pollution/analysis , Vital Capacity
17.
Ann Work Expo Health ; 66(Suppl 1): i56-i70, 2022 04 07.
Article in English | MEDLINE | ID: mdl-34417597

ABSTRACT

The GuLF Long-term Follow-up Study (GuLF STUDY) is investigating potential adverse health effects of workers involved in the Deepwater Horizon (DWH) oil spill response and cleanup (OSRC). Over 93% of the 160 000 personal air measurements taken on OSRC workers were below the limit of detection (LOD), as reported by the analytic labs. At this high level of censoring, our ability to develop exposure estimates was limited. The primary objective here was to reduce the number of measurements below the labs' reported LODs to reflect the analytic methods' true LODs, thereby facilitating the use of a relatively unbiased and precise Bayesian method to develop exposure estimates for study exposure groups (EGs). The estimates informed a job-exposure matrix to characterize exposure of study participants. A second objective was to develop descriptive statistics for relevant EGs that did not meet the Bayesian criteria of sample size ≥5 and censoring ≤80% to achieve the aforementioned level of bias and precision. One of the analytic labs recalculated the measurements using the analytic method's LOD; the second lab provided raw analytical data, allowing us to recalculate the data values that fell between the originally reported LOD and the analytical method's LOD. We developed rules for developing Bayesian estimates for EGs with >80% censoring. The remaining EGs were 100% censored. An order-based statistical method (OBSM) was developed to estimate exposures that considered the number of measurements, geometric standard deviation, and average LOD of the censored samples for N ≥ 20. For N < 20, substitution of ½ of the LOD was assigned. Recalculation of the measurements lowered overall censoring from 93.2 to 60.5% and of the THC measurements, from 83.1 to 11.2%. A total of 71% of the EGs met the ≤15% relative bias and <65% imprecision goal. Another 15% had censoring >80% but enough non-censored measurements to apply Bayesian methods. We used the OBSM for 3% of the estimates and the simple substitution method for 11%. The methods presented here substantially reduced the degree of censoring in the dataset and increased the number of EGs meeting our Bayesian method's desired performance goal. The OBSM allowed for a systematic and consistent approach impacting only the lowest of the exposure estimates. This approach should be considered when dealing with highly censored datasets.


Subject(s)
Occupational Exposure , Petroleum Pollution , Bayes Theorem , Follow-Up Studies , Humans , Occupational Exposure/adverse effects , Petroleum Pollution/adverse effects , Sample Size
18.
Ann Work Expo Health ; 66(Suppl 1): i111-i123, 2022 04 07.
Article in English | MEDLINE | ID: mdl-33791771

ABSTRACT

The Deepwater Horizon oil spill response and clean-up (OSRC) involved over 9000 large and small vessels deployed in waters of the Gulf of Mexico across four states (Alabama, Florida, Louisiana, and Mississippi). For the GuLF STUDY, we developed exposure estimates of oil-related components for many work groups to capture a wide range of OSRC operations on these vessels, such as supporting the four rig vessels charged with stopping the spill at the wellhead; skimming oil; in situ burning of oil; absorbing and containing oil by boom; and environmental monitoring. Work groups were developed by: (i) vessel activity; (ii) location (area of the Gulf or state); and (iii) time period. Using Bayesian methods, we computed exposure estimates for these groups for: total hydrocarbons measured as total petroleum hydrocarbons (THC), benzene, toluene, ethylbenzene, xylene, and n-hexane (BTEX-H). Estimates of the arithmetic means for THC ranged from 0.10 ppm [95% credible interval (CI) 0.04, 0.38 ppm] in time periods 2 and 3 (16 July-30 September 2010) to 15.06 ppm (95% CI 10.74, 22.41 ppm) in time period 1a (22 April-15 May 2010). BTEX-H estimates were substantially lower (in the parts per billion range). Exposure levels generally fell over time and differed statistically by activity, location, and time for some groups. These exposure estimates have been used to develop job-exposure matrices for the GuLF STUDY.


Subject(s)
Occupational Exposure , Petroleum Pollution , Water Pollutants, Chemical , Humans , Bayes Theorem , Environmental Monitoring/methods , Hydrocarbons , Inhalation Exposure , Occupational Exposure/analysis , Water Pollutants, Chemical/analysis
19.
Ann Work Expo Health ; 66(Suppl 1): i89-i110, 2022 04 07.
Article in English | MEDLINE | ID: mdl-33009797

ABSTRACT

BACKGROUND: The 2010 Deepwater Horizon (DWH) oil spill involved thousands of workers and volunteers to mitigate the oil release and clean-up after the spill. Health concerns for these participants led to the initiation of a prospective epidemiological study (GuLF STUDY) to investigate potential adverse health outcomes associated with the oil spill response and clean-up (OSRC). Characterizing the chemical exposures of the OSRC workers was an essential component of the study. Workers on the four oil rig vessels mitigating the spill and located within a 1852 m (1 nautical mile) radius of the damaged wellhead [the Discoverer Enterprise (Enterprise), the Development Driller II (DDII), the Development Driller III (DDIII), and the HelixQ4000] had some of the greatest potential for chemical exposures. OBJECTIVES: The aim of this paper is to characterize potential personal chemical exposures via the inhalation route for workers on those four rig vessels. Specifically, we presented our methodology and descriptive statistics of exposure estimates for total hydrocarbons (THCs), benzene, toluene, ethylbenzene, xylene, and n-hexane (BTEX-H) for various job groups to develop exposure groups for the GuLF STUDY cohort. METHODS: Using descriptive information associated with the measurements taken on various jobs on these rig vessels and with job titles from study participant responses to the study questionnaire, job groups [unique job/rig/time period (TP) combinations] were developed to describe groups of workers with the same or closely related job titles. A total of 500 job groups were considered for estimation using the available 8139 personal measurements. We used a univariate Bayesian model to analyze the THC measurements and a bivariate Bayesian regression framework to jointly model the measurements of THC and each of the BTEX-H chemicals separately, both models taking into account the many measurements that were below the analytic limit of detection. RESULTS: Highest THC exposures occurred in TP1a and TP1b, which was before the well was mechanically capped. The posterior medians of the arithmetic mean (AM) ranged from 0.11 ppm ('Inside/Other', TP1b, DDII; and 'Driller', TP3, DDII) to 14.67 ppm ('Methanol Operations', TP1b, Enterprise). There were statistical differences between the THC AMs by broad job groups, rigs, and time periods. The AMs for BTEX-H were generally about two to three orders of magnitude lower than the THC AMs, with benzene and ethylbenzene measurements being highly censored. CONCLUSIONS: Our results add new insights to the limited literature on exposures associated with oil spill responses and support the current epidemiologic investigation of potential adverse health effects of the oil spill.


Subject(s)
Occupational Exposure , Petroleum Pollution , Humans , Bayes Theorem , Benzene/analysis , Inhalation Exposure , Occupational Exposure/analysis , Petroleum Pollution/adverse effects , Prospective Studies
20.
Ann Work Expo Health ; 66(Suppl 1): i172-i187, 2022 04 07.
Article in English | MEDLINE | ID: mdl-32936300

ABSTRACT

The GuLF STUDY, initiated by the National Institute of Environmental Health Sciences, is investigating the health effects among workers involved in the oil spill response and clean-up (OSRC) after the Deepwater Horizon (DWH) explosion in April 2010 in the Gulf of Mexico. Clean-up included in situ burning of oil on the water surface and flaring of gas and oil captured near the seabed and brought to the surface. We estimated emissions of PM2.5 and related pollutants resulting from these activities, as well as from engines of vessels working on the OSRC. PM2.5 emissions ranged from 30 to 1.33e6 kg per day and were generally uniform over time for the flares but highly episodic for the in situ burns. Hourly emissions from each source on every burn/flare day were used as inputs to the AERMOD model to develop average and maximum concentrations for 1-, 12-, and 24-h time periods. The highest predicted 24-h average concentrations sometimes exceeded 5000 µg m-3 in the first 500 m downwind of flaring and reached 71 µg m-3 within a kilometer of some in situ burns. Beyond 40 km from the DWH site, plumes appeared to be well mixed, and the predicted 24-h average concentrations from the flares and in situ burns were similar, usually below 10 µg m-3. Structured averaging of model output gave potential PM2.5 exposure estimates for OSRC workers located in various areas across the Gulf. Workers located nearest the wellhead (hot zone/source workers) were estimated to have a potential maximum 12-h exposure of 97 µg m-3 over the 2-month flaring period. The potential maximum 12-h exposure for workers who participated in in situ burns was estimated at 10 µg m-3 over the ~3-month burn period. The results suggest that burning of oil and gas during the DWH clean-up may have resulted in PM2.5 concentrations substantially above the U.S. National Ambient Air Quality Standard for PM2.5 (24-h average = 35 µg m-3). These results are being used to investigate possible adverse health effects in the GuLF STUDY epidemiologic analysis of PM2.5 exposures.


Subject(s)
Air Pollution , Disasters , Occupational Exposure , Petroleum Pollution , Humans , Occupational Exposure/analysis , Particulate Matter/analysis , Petroleum Pollution/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...