Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 110
Filter
1.
Article in English | MEDLINE | ID: mdl-38183636

ABSTRACT

Objective: The purposes of this observational prospective study were to (1) characterize the wound-related factors (wound area, the presence of biofilm, and total bacteria), wound-related symptoms (fatigue, pain, exudate, itching, and edema or swelling), and systemic inflammation (level of serum C-reactive protein [CRP]), and (2) explore associations between wound-related factors, wound-related symptoms, and systemic inflammation in older individuals with chronic venous leg ulcers (CVLUs) over 8 weeks of wound treatment. Approach: A total of 117 participants who received standardized care (weekly sharp debridement) for chronic venous ulcer were enrolled. We collected clinical data every 2 weeks during the 8 weeks of the study period or until the wound was healed (if healed before 8 weeks). Associations among variables were estimated using a Bayesian approach applied to general linear mixed models. Results: Based on Bayes factor (BF) value, there was extremely strong evidence for the association of biofilm with mean total bacteria (BF >1,000). There was moderate evidence of a direct association between biofilm presence and levels of CRP (BF 4.3) and moderate evidence of direct associations between biofilm and wound-related symptoms, pain and exudate (BF 5.12, 8.49, respectively). Innovation: Wound-related symptoms and the level of systemic CRP were associated with biofilm among patients who were receiving weekly sharp debridement. Symptom severity associated with CVLUs requires assessment and management of wound-related factors and levels of inflammation in addition to symptom assessment. Conclusion: This study is the first to examine associations among biofilm, as wound-related factors, systemic inflammation, wound-related symptoms, and wound healing in clinical settings. Symptom severity, level of systemic CRP, and wound-related factors should be considered as well as assessment of biofilm in CVLU in older individuals with CVLU.

2.
Biofilm ; 6: 100151, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37662850

ABSTRACT

Bacterial biofilms account for up to 80% of all infections and complicate successful therapies due to their intrinsic tolerance to antibiotics. Biofilms also cause serious problems in the industrial sectors, for instance due to the deterioration of metals or microbial contamination of products. Efforts are put in finding novel strategies in both avoiding and fighting biofilms. Biofilm control is achieved by killing and/or removing biofilm or preventing transition to the biofilm lifestyle. Previous research reported on the anti-biofilm potency of α,α-disubstituted ß-amino amides A1, A2 and A3, which are small antimicrobial peptidomimetics with a molecular weight below 500 Da. In the current study it was investigated if these derivatives cause a fast disintegration of biofilm bacteria and removal of Staphylococcus aureus biofilms. One hour incubation of biofilms with all three derivatives resulted in reduced metabolic activity and membrane permeabilization in S. aureus (ATCC 25923) biofilms. Bactericidal properties of these derivatives were attributed to a direct effect on membranes of biofilm bacteria. The green fluorescence protein expressing Staphylococcus aureus strain AH2547 was cultivated in a CDC biofilm reactor and utilized for disinfectant efficacy testing of A3, following the single tube method (American Society for Testing and Materials designation number E2871). A3 at a concentration of 90 µM acted as fast as 100 µM chlorhexidine and was equally effective. Confocal laser scanning microscopy studies showed that chlorhexidine treatment lead to fluorescence fading indicating membrane permeabilization but did not cause biomass removal. In contrast, A3 treatment caused a simultaneous biofilm fluorescence loss and biomass removal. These dual anti-biofilm properties make α,α-disubstituted ß-amino amides promising scaffolds in finding new control strategies against recalcitrant biofilms.

3.
NPJ Biofilms Microbiomes ; 9(1): 60, 2023 08 23.
Article in English | MEDLINE | ID: mdl-37612330

ABSTRACT

Hydrogen peroxide (HP) is a common disinfectant and antiseptic. When applied to a biofilm, it may be expected that the top layer of the biofilm would be killed by HP, the HP would penetrate further, and eventually eradicate the entire biofilm. However, using the Biofilm.jl computer model, we demonstrate a mechanism by which the biofilm can persist, and even become thicker, in the indefinite treatment with an HP solution at concentrations that are lethal to planktonic microorganisms. This surprising result is found to be dependent on the neutralization of HP by dead biomass, which provides protection for living biomass deeper within the biofilm. Practically, to control a biofilm, this result leads to the concept of treating with an HP dose exceeding a critical threshold concentration rather than a sustained, lower-concentration treatment.


Subject(s)
Biofilms , Hydrogen Peroxide , Hydrogen Peroxide/pharmacology , Catalase , Biomass , Computer Simulation
4.
Nat Chem Biol ; 19(4): 488-497, 2023 04.
Article in English | MEDLINE | ID: mdl-36522463

ABSTRACT

Synthetic biology has shown remarkable potential to program living microorganisms for applications. However, a notable discrepancy exists between the current engineering practice-which focuses predominantly on planktonic cells-and the ubiquitous observation of microbes in nature that constantly alternate their lifestyles on environmental variations. Here we present the de novo construction of a synthetic genetic program that regulates bacterial life cycle and enables phase-specific gene expression. The program is orthogonal, harnessing an engineered protein from 45 candidates as the biofilm matrix building block. It is also highly controllable, allowing directed biofilm assembly and decomposition as well as responsive autonomous planktonic-biofilm phase transition. Coupling to synthesis modules, it is further programmable for various functional realizations that conjugate phase-specific biomolecular production with lifestyle alteration. This work establishes a versatile platform for microbial engineering across physiological regimes, thereby shedding light on a promising path for gene circuit applications in complex contexts.


Subject(s)
Bacteria , Biofilms , Bacteria/metabolism , Synthetic Biology
5.
Nat Rev Microbiol ; 20(10): 608-620, 2022 10.
Article in English | MEDLINE | ID: mdl-35922483

ABSTRACT

Bacterial biofilms are often defined as communities of surface-attached bacteria and are typically depicted with a classic mushroom-shaped structure characteristic of Pseudomonas aeruginosa. However, it has become evident that this is not how all biofilms develop, especially in vivo, in clinical and industrial settings, and in the environment, where biofilms often are observed as non-surface-attached aggregates. In this Review, we describe the origin of the current five-step biofilm development model and why it fails to capture many aspects of bacterial biofilm physiology. We aim to present a simplistic developmental model for biofilm formation that is flexible enough to include all the diverse scenarios and microenvironments where biofilms are formed. With this new expanded, inclusive model, we hereby introduce a common platform for developing an understanding of biofilms and anti-biofilm strategies that can be tailored to the microenvironment under investigation.


Subject(s)
Biofilms , Pseudomonas aeruginosa , Animals , Life Cycle Stages , Pseudomonas aeruginosa/physiology
6.
Antimicrob Agents Chemother ; 66(4): e0002122, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35266829

ABSTRACT

Is there a universal genetically programmed defense providing tolerance to antibiotics when bacteria grow as biofilms? A comparison between biofilms of three different bacterial species by transcriptomic and metabolomic approaches uncovered no evidence of one. Single-species biofilms of three bacterial species (Pseudomonas aeruginosa, Staphylococcus aureus, and Acinetobacter baumannii) were grown in vitro for 3 days and then challenged with respective antibiotics (ciprofloxacin, daptomycin, and tigecycline) for an additional 24 h. All three microorganisms displayed reduced susceptibility in biofilms compared to planktonic cultures. Global transcriptomic profiling of gene expression comparing biofilm to planktonic and antibiotic-treated biofilm to untreated biofilm was performed. Extracellular metabolites were measured to characterize the utilization of carbon sources between biofilms, treated biofilms, and planktonic cells. While all three bacteria exhibited a species-specific signature of stationary phase, no conserved gene, gene set, or common functional pathway could be identified that changed consistently across the three microorganisms. Across the three species, glucose consumption was increased in biofilms compared to planktonic cells, and alanine and aspartic acid utilization were decreased in biofilms compared to planktonic cells. The reasons for these changes were not readily apparent in the transcriptomes. No common shift in the utilization pattern of carbon sources was discerned when comparing untreated to antibiotic-exposed biofilms. Overall, our measurements do not support the existence of a common genetic or biochemical basis for biofilm tolerance against antibiotics. Rather, there are likely myriad genes, proteins, and metabolic pathways that influence the physiological state of individual microorganisms in biofilms and contribute to antibiotic tolerance.


Subject(s)
Anti-Bacterial Agents , Biofilms , Anti-Bacterial Agents/pharmacology , Carbon , Plankton/genetics , Pseudomonas aeruginosa/genetics , Staphylococcus aureus/genetics
7.
Lancet Infect Dis ; 22(3): e88-e92, 2022 03.
Article in English | MEDLINE | ID: mdl-34506737

ABSTRACT

Standard doses of antibiotics do not efficiently treat chronic infections of the soft tissue and bone. In this Personal View, we advocate for improving treatment of these infections by taking the infectious microenvironment into account. The infectious microenvironment can cause sensitive bacteria to lose their susceptibility to antibiotics that are effective in standard laboratory susceptibility testing. We propose that bacteria behave substantially different in standard laboratory conditions than they do in actual infections. The infectious microenvironment could impose changes in growth and metabolic activity that result in increased protection against antibiotics. Therefore, we advocate that improved antibiotic treatment of chronic infection is achievable when antibiotics are recommended on the basis of susceptibility testing in relevant in vitro conditions that resemble actual infectious microenvironments. We recommend establishing knowledge of the relevant conditions of the chemical and physical composition of the infectious microenvironment. Recent advances in RNA sequencing, metabolomics, and microscopy have made it possible for the characterisation of the microenvironment of infections and to validate the clinical relevance of in vitro conditions to actual infections.


Subject(s)
Anti-Bacterial Agents , Bacteria , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Humans
8.
Antibiotics (Basel) ; 10(7)2021 Jul 14.
Article in English | MEDLINE | ID: mdl-34356776

ABSTRACT

The synthesis and biological activity of several novel nitrothiazole, nitrobenzothiazole, and nitrofuran containing antimicrobial agents for the eradication of biofilm-forming Gram-negative and Gram-positive pathogens is described. Nitazoxanide (NTZ), nitrofurantoin, and furazolidone are commercial antimicrobials which were used as models to show how structural modification improved activity toward planktonic bacteria via minimum inhibitory concentration (MIC) assays and biofilms via minimum biofilm eradication concentration (MBEC) assays. Structure-activity relationship (SAR) studies illustrate the ways in which improvements have been made to the aforementioned antimicrobial agents. It is of particular interest in this regard that the introduction of a chloro substituent at the 5-position of NTZ (analog 1b) resulted in marked activity enhancement, as did the replacement of the 2-acetoxy substituent in the latter compound with a basic amine group (analog 7b). It is also of importance that analog 4a, which is a simple methacrylamide, displayed noteworthy activity against S. epidermidis biofilms. These lead compounds identified to have high activity towards biofilms provide promise as starting points in future pro-drug studies.

9.
Biomaterials ; 275: 120775, 2021 08.
Article in English | MEDLINE | ID: mdl-34243039

ABSTRACT

Biofilms that form on implanted medical devices cause recalcitrant infections. The early events enabling contaminating bacteria to evade immune clearance, before a mature biofilm is established, are poorly understood. Live imaging in vitro demonstrated that Staphylococcus aureus sparsely inoculated on an abiotic surface can go undiscovered by human neutrophils, grow, and form aggregates. Small (~50 µm2) aggregates of attached bacteria resisted killing by human neutrophils, resulting in neutrophil lysis and bacterial persistence. In vivo, neutrophil recruitment to a peritoneal implant was spatially heterogenous, with some bacterial aggregates remaining undiscovered by neutrophils after 24 h. Intravital imaging in mouse skin revealed that attached S. aureus aggregates grew and remained undiscovered by neutrophils for up to 3 h. These results suggest a model in which delayed recruitment of neutrophils to an abiotic implant presents a critical window in which bacteria establish a nascent biofilm and acquire tolerance to neutrophil killing.


Subject(s)
Staphylococcal Infections , Staphylococcus aureus , Animals , Biofilms , Immune Evasion , Mice , Neutrophil Infiltration , Neutrophils
10.
APMIS ; 129(10): 598-606, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34120370

ABSTRACT

Research on biofilms is predominantly made in in vitro contexts. However, in vivo observation of biofilms in human chronic infections shows distinct differences compared to in vitro biofilm growth. This could imply the use of an inadequate mental model both in research and healthcare practices. Drawing on knowledge from the cognitive sciences, we hypothesise that the predominance of in vitro research on biofilms is skewed towards a mental model promoting wrong inferences for researchers and healthcare professionals (HCPs) in the in vivo context. To explore the prevalence of such a mental model, we carried out a qualitative image analysis in which biofilm illustrations from a Google image search were coded for typical in vitro or in vivo characteristics. Further, to investigate potential misinformed and unhelpful clinical interventions related to biofilms, we conducted a quantitative questionnaire among HCPs. The questions were designed to test whether knowledge about in vitro biofilms was used in an in vivo context. This questionnaire was analysed through a chi-squared test. Most biofilm illustrations were consistent with the in vitro model. A statistical analysis of survey responses revealed that HCPs have adequate knowledge about biofilm but often respond incorrectly when asked to apply their knowledge to in vivo contexts. The outcome of this research points to a prevalent and consolidated mental model derived from in vitro observations. This model has likely been made dominant by HCPs' frequent exposure to visual depictions in articles and presentations. The prevalence of the in vitro model sets up the possibility of erroneous claims when the in vitro model is inadequately applied to in vivo contexts. This has potential implications for HCPs working in fields involving biofilm, such as wound care treatment.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Health Knowledge, Attitudes, Practice , Health Personnel/psychology , Models, Psychological , Pseudomonas aeruginosa/drug effects , Biofilms/growth & development , Humans , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/growth & development , Surveys and Questionnaires , Wound Infection/drug therapy , Wound Infection/microbiology
11.
Chem Biol Drug Des ; 97(1): 134-147, 2021 01.
Article in English | MEDLINE | ID: mdl-32844569

ABSTRACT

Prodrugs are pharmacologically attenuated derivatives of drugs that undergo bioconversion into the active compound once reaching the targeted site, thereby maximizing their efficiency. This strategy has been implemented in pharmaceuticals to overcome obstacles related to absorption, distribution, and metabolism, as well as with intracellular dyes to ensure concentration within cells. In this study, we provide the first examples of a prodrug strategy that can be applied to simple phenolic antimicrobials to increase their potency against mature biofilms. The addition of (acetoxy)methyl iminodiacetate groups increases the otherwise modest potency of simple phenols. Biofilm-forming bacteria exhibit a heightened tolerance toward antimicrobial agents, thereby accentuating the need for new antibiotics as well as those, which incorporate novel delivery strategies to enhance activity toward biofilms.


Subject(s)
Anti-Infective Agents/pharmacology , Biofilms/drug effects , Imino Acids/chemistry , Phenols/chemistry , Prodrugs/pharmacology , Anti-Infective Agents/chemistry , Microbial Sensitivity Tests , Phenols/pharmacology , Prodrugs/chemistry , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/physiology , Staphylococcus epidermidis/drug effects , Staphylococcus epidermidis/physiology , Structure-Activity Relationship
12.
Front Microbiol ; 12: 785182, 2021.
Article in English | MEDLINE | ID: mdl-35095798

ABSTRACT

The goal of this study was to quantify the variability of confocal laser scanning microscopy (CLSM) time-lapse images of early colonizing biofilms to aid in the design of future imaging experiments. To accomplish this a large imaging dataset consisting of 16 independent CLSM microscopy experiments was leveraged. These experiments were designed to study interactions between human neutrophils and single cells or aggregates of Staphylococcus aureus (S. aureus) during the initial stages of biofilm formation. Results suggest that in untreated control experiments, variability differed substantially between growth phases (i.e., lag or exponential). When studying the effect of an antimicrobial treatment (in this case, neutrophil challenge), regardless of the inoculation level or of growth phase, variability changed as a frown-shaped function of treatment efficacy (i.e., the reduction in biofilm surface coverage). These findings were used to predict the best experimental designs for future imaging studies of early biofilms by considering differing (i) numbers of independent experiments; (ii) numbers of fields of view (FOV) per experiment; and (iii) frame capture rates per hour. A spreadsheet capable of assessing any user-specified design is included that requires the expected mean log reduction and variance components from user-generated experimental results. The methodology outlined in this study can assist researchers in designing their CLSM studies of antimicrobial treatments with a high level of statistical confidence.

13.
Wound Repair Regen ; 28(5): 593-599, 2020 09.
Article in English | MEDLINE | ID: mdl-32529778

ABSTRACT

In 2008, two articles in Wound Repair and Regeneration changed the clinical perspective on chronic wounds. They stated that chronic wounds that do not heal contain bacterial biofilms and that these biofilms may be one of the reasons for the nonhealing properties of the wounds. However, we still do not understand the exact role biofilms play in the halted healing process, and we are not able to successfully treat them. The reason for this could be that in vivo biofilms differ substantially from in vitro biofilms, and that most of the knowledge about biofilms originates from in vitro research. In this article, we introduce the zone model as a concept for understanding bacterial behavior and the impact of the microenvironment on both the host and the bacteria. Until now, identification of bacteria, gene expression, and postscript regulation have been looking at a bulk of bacteria and averaging the behavior of all the bacteria. As the zone model dictates that every single bacterium reacts to its own microenvironment, the model may facilitate the planning of future research with improved clinical relevance. The zone model integrates physiology and biology from single cells, microbial aggregates, local host response, surrounding tissue, and the systemic context of the whole host. Understanding the mechanisms behind the actions and reactions by a single bacterium when interacting with other neighboring bacteria cells, other microorganisms, and the host will help us overcome the detrimental effects of bacteria in chronic wounds. Furthermore, we propose use of the terminology "bacterial phenotype" when describing the actions and reactions of bacteria, and the term "biofilms" to describe the morphology of the bacterial community.


Subject(s)
Bacterial Infections/microbiology , Biofilms , Skin Diseases, Bacterial/microbiology , Wound Healing , Wound Infection/microbiology , Humans
14.
Int J Antimicrob Agents ; 56(1): 105986, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32335279

ABSTRACT

OBJECTIVES: ß-lactamases are the major resistance determinant for ß-lactam antibiotics in Gram-negative bacteria. Although there are ß-lactamase inhibitors (BLIs) available, ß-lactam-BLI combinations are increasingly being neutralised by diverse mechanisms of bacterial resistance. This study hypothesised that permeability-increasing antimicrobial peptides (AMPs) could lower the amount of BLIs necessary to sensitise bacteria to antibiotics that are ß-lactamase substrates. METHODS: To test this hypothesis, checkerboard assays were performed to measure the ability of several AMPs to synergise with piperacillin, ticarcillin, amoxicillin, ampicillin, and ceftazidime in the presence of either tazobactam, clavulanic acid, sulbactam, aztreonam, phenylboronic acid (PBA), or oxacillin. Assays were performed using planktonic and biofilm-forming cells of Pseudomonas aeruginosa, Escherichia coli and Klebsiella pneumoniae overexpressing ß-lactamases. RESULTS: Synergy between polymyxin B nonapeptide (PMBN) and tazobactam boosted piperacillin activity by a factor of 128 in Escherichia coli (from 256 to 2 mg/L, fractional inhibitory concentration index (FICI) ≤ 0.02) and by a factor of at least 64 in Klebsiella pneumoniae (from 1024 mg/L to 16 mg/L, FICI ≤ 0.05). Synergy between PMBN and PBA enhanced ceftazidime activity 133 times in Pseudomonas aeruginosa (from 16 mg/L to 0.12 mg/L, FICI ≤ 0.03). As a consequence, MICs of all the tested antibiotics were brought down to therapeutic range. In addition, the combinations also reduced several orders of magnitude the amount of inhibitor needed for antibiotic sensitisation. Ceftazidime/PBA/PMBN at 50 times the planktonic MIC caused a 10 million-fold reduction in the viability of mature biofilms. CONCLUSION: This study proved that AMPs can synergise with BLIs and that this phenomenon can be exploited to sensitise bacteria to antibiotics.


Subject(s)
Anti-Bacterial Agents/pharmacology , Carbapenem-Resistant Enterobacteriaceae/drug effects , Escherichia coli/drug effects , Klebsiella pneumoniae/drug effects , Pore Forming Cytotoxic Proteins/pharmacology , Pseudomonas aeruginosa/drug effects , beta-Lactamase Inhibitors/pharmacology , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenem-Resistant Enterobacteriaceae/metabolism , Ceftazidime/pharmacology , Drug Synergism , Drug Therapy, Combination , Escherichia coli/genetics , Escherichia coli/metabolism , Humans , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/metabolism , Microbial Sensitivity Tests , Polymyxin B/pharmacology , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/metabolism , Tazobactam/pharmacology , beta-Lactamases/genetics , beta-Lactamases/metabolism
15.
ACS Omega ; 5(11): 6010-6020, 2020 Mar 24.
Article in English | MEDLINE | ID: mdl-32226882

ABSTRACT

The recalcitrance exhibited by microbial biofilms to conventional disinfectants has motivated the development of new chemical strategies to control and eradicate biofilms. The activities of several small phenolic compounds and their trichloromethylsulfenyl ester derivatives were evaluated against planktonic cells and mature biofilms of Staphylococcus epidermidis and Pseudomonas aeruginosa. Some of the phenolic parent compounds are well-studied constituents of plant essential oils, for example, eugenol, menthol, carvacrol, and thymol. The potency of sulfenate ester derivatives was markedly and consistently increased toward both planktonic cells and biofilms. The mean fold difference between the parent and derivative minimum inhibitory concentration against planktonic cells was 44 for S. epidermidis and 16 for P. aeruginosa. The mean fold difference between the parent and derivative biofilm eradication concentration for 22 tested compounds against both S. epidermidis and P. aeruginosa was 3. This work demonstrates the possibilities of a new class of biofilm-targeting disinfectants deploying a sulfenate ester functional group to increase the antimicrobial potency toward microorganisms in biofilms.

16.
Biotechnol Bioeng ; 117(5): 1458-1469, 2020 05.
Article in English | MEDLINE | ID: mdl-31956979

ABSTRACT

19 F nuclear magnetic resonance (NMR) oximetry and 1 H NMR velocimetry were used to noninvasively map oxygen concentrations and hydrodynamics in space and time in a model packed bed biofilm system in the presence and absence of flow. The development of a local oxygen sink associated with a single gel bead inoculated with respiring Escherichia coli was analyzed with a phenomenological model to determine the specific growth rate of the bacteria in situ, returning a value (0.66 hr-1 ) that was close to that measured independently in planktonic culture (0.62 hr-1 ). The decay of oxygen concentration in and around the microbiologically active bead was delayed and slower in experiments conducted under continuous flow in comparison to no-flow experiments. Concentration boundary layer thicknesses were determined and Sherwood numbers calculated to quantify external mass transfer resistance. Boundary layers were thicker in no-flow experiments compared to experiments with flow. Whereas the oxygen concentration profile across a reactive biofilm particle was symmetric in no-flow experiments, it was asymmetric with respect to flow direction in flow experiments with Sherwood numbers on the leading edge (Sh = 7) being larger than the trailing edge (Sh = 3.5). The magnitude of the experimental Sh was comparable to values predicted by a variety of correlations. These spatially resolved measurements of oxygen distribution in a geometrically complex model reveal in innovative detail the local coupling between microbial growth, oxygen consumption, and external mass transfer.


Subject(s)
Biofilms , Biotechnology/methods , Magnetic Resonance Spectroscopy/methods , Oxygen , Escherichia coli/metabolism , Fluorine/analysis , Fluorine/metabolism , Oxygen/analysis , Oxygen/metabolism , Porosity , Rheology
17.
Biofilm ; 2: 100026, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33447811

ABSTRACT

Biofilms, surface-adherent microbial communities, are associated with microbial fouling and corrosion in terrestrial water-distribution systems. Biofilms are also present in human spaceflight, particularly in the Water Recovery System (WRS) on the International Space Station (ISS). The WRS is comprised of the Urine Processor Assembly (UPA) and the Water Processor Assembly (WPA) which together recycles wastewater from human urine and recovered humidity from the ISS atmosphere. These wastewaters and various process streams are continually inoculated with microorganisms primarily arising from the space crew microbiome. Biofilm-related fouling has been encountered and addressed in spacecraft in low Earth orbit, including ISS and the Russian Mir Space Station. However, planned future missions beyond low Earth orbit to the Moon and Mars present additional challenges, as resupplying spare parts or support materials would be impractical and the mission timeline would be in the order of years in the case of a mission to Mars. In addition, future missions are expected to include a period of dormancy in which the WRS would be unused for an extended duration. The concepts developed in this review arose from a workshop including NASA personnel and representatives with biofilm expertise from a wide range of industrial and academic backgrounds. Here, we address current strategies that are employed on Earth for biofilm control, including antifouling coatings and biocides and mechanisms for mitigating biofilm growth and damage. These ideas are presented in the context of their applicability to spaceflight and identify proposed new topics of biofilm control that need to be addressed in order to facilitate future extended, crewed, spaceflight missions.

18.
Front Chem ; 7: 653, 2019.
Article in English | MEDLINE | ID: mdl-31632948

ABSTRACT

Biofilm-forming bacteria present formidable challenges across diverse settings, and there is a need for new antimicrobial agents that are both environmentally acceptable and relatively potent against microorganisms in the biofilm state. The antimicrobial activity of three naturally occurring, low molecular weight, phenols, and their derivatives were evaluated against planktonic and biofilm Staphylococcus epidermidis and Pseudomonas aeruginosa. The structure activity relationships of eugenol, thymol, carvacrol, and their corresponding 2- and 4-allyl, 2-methallyl, and 2- and 4-n-propyl derivatives were evaluated. Allyl derivatives showed a consistent increased potency with both killing and inhibiting planktonic cells but they exhibited a decrease in potency against biofilms. This result underscores the importance of using biofilm assays to develop structure-activity relationships when the end target is biofilm.

19.
Infect Immun ; 87(12)2019 12.
Article in English | MEDLINE | ID: mdl-31548325

ABSTRACT

The ability of human neutrophils to clear newly attached Staphylococcus aureus bacteria from a serum-coated glass surface was examined in vitro using time-lapse confocal scanning laser microscopy. Quantitative image analysis was used to measure the temporal change in bacterial biomass, neutrophil motility, and fraction of the surface area policed by neutrophils. In control experiments in which the surface was inoculated with bacteria but no neutrophils were added, prolific bacterial growth was observed. Neutrophils were able to control bacterial growth but only consistently when the neutrophil/bacterium number ratio exceeded approximately 1. When preattached bacteria were given a head start and allowed to grow for 3 h prior to neutrophil addition, neutrophils were unable to maintain control of the nascent biofilm. In these head-start experiments, aggregates of bacterial biofilm with areas of 50 µm2 or larger formed, and the growth of such aggregates continued even when multiple neutrophils attacked a cluster. These results suggest a model for the initiation of a biofilm infection in which a delay in neutrophil recruitment to an abiotic surface allows surface-attached bacteria time to grow and form aggregates that become protected from neutrophil clearance. Results from a computational model of the neutrophil-biofilm surface contest supported this conceptual model and highlighted the stochastic nature of the interaction. Additionally, we observed that both neutrophil motility and clearance of bacteria were impaired when oxygen tension was reduced to 0% or 2% O2.


Subject(s)
Biofilms/growth & development , Neutrophils/immunology , Prostheses and Implants/microbiology , Prosthesis-Related Infections/immunology , Staphylococcal Infections/immunology , Staphylococcus aureus/immunology , Anaerobiosis , Computational Biology , Computer Simulation , Humans , Immune Evasion/immunology , Microscopy, Confocal , Prosthesis-Related Infections/microbiology , Staphylococcus aureus/growth & development
20.
J Bacteriol ; 201(22)2019 11 15.
Article in English | MEDLINE | ID: mdl-31501280

ABSTRACT

Transcriptomic, metabolomic, physiological, and computational modeling approaches were integrated to gain insight into the mechanisms of antibiotic tolerance in an in vitro biofilm system. Pseudomonas aeruginosa biofilms were grown in drip flow reactors on a medium composed to mimic the exudate from a chronic wound. After 4 days, the biofilm was 114 µm thick with 9.45 log10 CFU cm-2 These biofilms exhibited tolerance, relative to exponential-phase planktonic cells, to subsequent treatment with ciprofloxacin. The specific growth rate of the biofilm was estimated via elemental balances to be approximately 0.37 h-1 and with a reaction-diffusion model to be 0.32 h-1, or one-third of the maximum specific growth rate for planktonic cells. Global analysis of gene expression indicated lower transcription of ribosomal genes and genes for other anabolic functions in biofilms than in exponential-phase planktonic cells and revealed the induction of multiple stress responses in biofilm cells, including those associated with growth arrest, zinc limitation, hypoxia, and acyl-homoserine lactone quorum sensing. Metabolic pathways for phenazine biosynthesis and denitrification were transcriptionally activated in biofilms. A customized reaction-diffusion model predicted that steep oxygen concentration gradients will form when these biofilms are thicker than about 40 µm. Mutant strains that were deficient in Psl polysaccharide synthesis, the stringent response, the stationary-phase response, and the membrane stress response exhibited increased ciprofloxacin susceptibility when cultured in biofilms. These results support a sequence of phenomena leading to biofilm antibiotic tolerance, involving oxygen limitation, electron acceptor starvation and growth arrest, induction of associated stress responses, and differentiation into protected cell states.IMPORTANCE Bacteria in biofilms are protected from killing by antibiotics, and this reduced susceptibility contributes to the persistence of infections such as those in the cystic fibrosis lung and chronic wounds. A generalized conceptual model of biofilm antimicrobial tolerance with the following mechanistic steps is proposed: (i) establishment of concentration gradients in metabolic substrates and products; (ii) active biological responses to these changes in the local chemical microenvironment; (iii) entry of biofilm cells into a spectrum of states involving alternative metabolisms, stress responses, slow growth, cessation of growth, or dormancy (all prior to antibiotic treatment); (iv) adaptive responses to antibiotic exposure; and (v) reduced susceptibility of microbial cells to antimicrobial challenges in some of the physiological states accessed through these changes.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Drug Resistance, Bacterial , Pseudomonas aeruginosa/drug effects , Ciprofloxacin/pharmacology , Diffusion , Drug Resistance, Bacterial/genetics , Gene Expression , Models, Biological , Oxygen/metabolism , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/metabolism , Pseudomonas aeruginosa/physiology , Stress, Physiological
SELECTION OF CITATIONS
SEARCH DETAIL
...