Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Integr Comp Biol ; 59(5): 1150-1164, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31086961

ABSTRACT

The landscape composition of an organism's home range or territory should influence aspects of its condition, including measures of immune function. Changes in immunocompetence arising from variation in landcover may provide important links between habitat changes and patterns of disease spread. To establish a baseline understanding for whether immune measures covary with changes in landcover, we examined associations between immunological parameters and landcover composition for adults and nestlings of five shrubland bird species. Specifically, we examined the bacteria-killing ability (BKA) of the blood plasma and profiles of the five avian leukocytes as our measures of immune function, and assessed the proportion of area around each bird's nest that was composed of the four major landcover types in the Midwestern USA: row crop agriculture, developed, forest, and grass/shrub. We performed landcover assessments at 100 and 1000 m radius buffers to identify whether associations between habitat and immune function differed at the two spatial scales. As part of this work, we examined age and species-related immunological variation, as well as associations among the immune parameters. There was little evidence linking variation in immune function to landcover composition for the adults at either spatial scale, but there were numerous associations for nestlings, and these were stronger at the 1000 than 100 m spatial scale. The proportion of grass/shrub around the nest had the largest impact on immune function, although the effect varied by immune parameter and species. BKA and basophils were inversely associated with grass/shrub for all species, whereas lymphocytes were positively associated with grass/shrub for all species. We also documented species-level differences among adults and nestlings for BKA and all leukocytes except monocytes. As expected, we found that nestlings had reduced levels of BKA, lymphocytes, monocytes, and elevated heterophils compared with adults (except for field sparrow-Spizella pusilla-nestlings, which had higher lymphocytes). Basophils generally did not differ by age class, and eosinophils exhibited species-specific patterns, in which they were higher for nestling American robins (Turdus migratorius) and gray catbirds (Dumetella carolinensis) compared with adults, but lower in the other nestlings. Heterophils and lymphocytes were inversely associated for all species and age classes, and basophil levels were positively associated with BKA across species and age classes. Together, these findings bolster our understanding of age and species-specific variation in immune function, and provide evidence that immune measures can covary with changes in landcover.


Subject(s)
Animals, Newborn/immunology , Birds/immunology , Ecosystem , Immunity, Innate , Agriculture , Animals , Forests , Illinois
SELECTION OF CITATIONS
SEARCH DETAIL