Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 37(19): 5783-5794, 2021 May 18.
Article in English | MEDLINE | ID: mdl-33939435

ABSTRACT

Pulsed laser ablation in liquid (PLAL) is a powerful method for producing nanoparticle colloids with a long-term stability despite the absence of stabilizing organic agents. The colloid stability involves different reactivities and chemical equilibria with complex ionic-specific effects at the nanoparticle/solvent interface which must be strongly influenced by their chemical composition. In this work, the surface composition of PLAL-produced gold nanoparticles in alkaline and saline (NaBr) water is investigated by X-ray photoelectron spectroscopy on free-flying nanoparticles, exempt from any substrate or radiation damage artifact. The Au 4f photoelectron spectra with a depth profiling investigation are used to evaluate the degree of nanoparticle surface oxidation. In alkaline water, the results preclude any surface oxidation contrary to the case of nanoparticles produced in NaBr solution. In addition, the analysis of Br 3d core-level photoelectron spectra agrees with a clear signature of Br on the nanoparticle surface, which is confirmed by a specific valence band feature. This experimental study is supported by DFT calculations, evaluating the energy balance of halide adsorption on different configurations of gold surfaces including oxidation or adsorbed salts.

2.
Rev Sci Instrum ; 90(8): 083306, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31472612

ABSTRACT

The performance of a newly built omega type electrostatic analyzer designed to act as an in-line charge-state purification system for ions in the kiloelectronvolt energy range is reported. The analyzer consists of a set of four consecutive electrostatic 140° concentric cylindrical electrodes enclosed by Matsuda electrodes. This setup was recently tested and validated using O5+, Ar9+, and Xe20+ ion beams at an energy of 14 qkeV at the ARIBE facility. A resolving power of 10.5 and a transmission of 100% of the desired charge state are measured allowing a good purification of incoming ion beams with charge states up to 10+ and a fairly good purification for charge states at least up to 20+. In comparison with other in-line solutions such as the Wien filter, our system has the advantage of being purely electrostatic and therefore lacking common drawbacks as, for example, hysteresis.

3.
Langmuir ; 35(36): 11859-11871, 2019 Sep 10.
Article in English | MEDLINE | ID: mdl-31453695

ABSTRACT

The surface chemistry of gold nanoparticles produced by the pulsed laser ablation in liquids method is investigated by X-ray photoelectron spectroscopy (XPS). The presence of surface oxide expected on these systems is investigated using synchrotron radiation in conditions close to their original state in solvent but free from substrate or solvent effects which could affect the interpretation of spectroscopic observations. For that purpose we performed the experiment on a controlled free-standing nanoparticle beam produced by combination of an atomizer and an aerodynamic lens system. These results are compared with those obtained by the standard situation of deposited nanoparticles on silicon substrate. An accurate analysis based on Bayesian statistics concludes that the existence of oxide in the free-standing conditions cannot be solely confirmed by the recorded core-level 4f spectra. If present, our data indicate an upper limit of 2.15 ± 0.68% of oxide. However, a higher credence to the hypothesis of its existence is brought by the structureless valence profile of the free-standing beam. Moreover, the cross-comparison with the deposited nanoparticles case clearly evidences an important misleading substrate effect. Experiment with free-standing nanoparticles is then demonstrated to be the right way to further investigate oxidation states on Au nanoparticles.

4.
J Nanosci Nanotechnol ; 19(1): 593-601, 2019 Jan 01.
Article in English | MEDLINE | ID: mdl-30327074

ABSTRACT

The Kossel effect is the diffraction by a periodically structured medium, of the characteristic X-ray radiation emitted by the atoms of the medium. We show that multilayers designed for X-ray optics applications are convenient periodic systems to use in order to produce the Kossel effect, modulating the intensity emitted by the sample in a narrow angular range defined by the Bragg angle. We also show that excitation can be done by using photons (X-rays), electrons or protons (or charged particles), under near normal or grazing incident geometries, which makes the method relatively easy to implement. The main constraint comes from the angular resolution necessary for the detection of the emitted radiation. This leads to small solid angles of detection and long acquisition times to collect data with sufficient statistical significance. Provided this difficulty is overcome, the comparison or fit of the experimental Kossel curves, i.e., the angular distributions of the intensity of an emitted radiation of one of the element of the periodic stack, with the simulated curves enables getting information on the depth distribution of the elements throughout the multilayer. Thus the same kind of information obtained from the more widespread method of X-ray standing wave induced fluorescence used to characterize stacks of nanometer period, can be obtained using the Kossel effect.

5.
Rev Sci Instrum ; 89(9): 096109, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30278717

ABSTRACT

We present the observation of the angular distribution of a characteristic x-ray emission through a periodic multilayer. The emission coming from the substrate on which the multilayer is deposited is used for this purpose. It is generated upon proton irradiation through the multilayer and detected with an energy sensitive CCD camera. The observed distribution in the low detection angle range presents a clear dip at a position characteristic of the emitting element. Thus, such a device can be envisaged as a spectrometer without mechanical displacement and using various ionizing sources (electrons, x-rays, and ions), their incident direction being irrelevant.

SELECTION OF CITATIONS
SEARCH DETAIL
...