Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Monit Assess ; 193(12): 834, 2021 Nov 20.
Article in English | MEDLINE | ID: mdl-34799792

ABSTRACT

Atmospheric contaminants severely impact air quality in large global urban centers. The emergence of COVID-19 in China in December 2019 and its expansion around the world reduced human activities on account of the implementation of a social isolation policy. In Brazil, COVID-19 arrived in February 2020, and a policy of social isolation was adopted in March by state governments; this work aimed to evaluate pollutant gas emissions in Brazil in the face of the pandemic. In the city of São Paulo, the concentrations of nitrogen dioxide (NO2) and carbon monoxide (CO) were analyzed at three automatic monitoring stations of the Environmental Company of the State of São Paulo (CETESB). In this way, reductions in concentrations of these gases were observed after the decree of social isolation on March 24, due to a noticeable drop in vehicle traffic in the city. A reduction in concentrations of NO2, between 53.6 and 73%, and a decrease in concentrations of CO, from 50 to 66.7%, were obtained at the monitoring stations. Another impact caused by COVID-19 was the increase in deforestation and fires was identified in the Brazilian Legal Amazon after social isolation, due to the decrease in the inspection of environmental agencies. The fires produce thermal degradation of the biomass, generating polluting gases and material particulate. These atmospheric contaminants are extremely harmful to the health of Amazonian populations. Summed to the expansion of COVID-19 in this region, all these factors combined cause the public health system to collapse. CO2eq emissions increase estimates, according to the Greenhouse Gas Emissions Estimation System technical report, ranged from 10 to 20% in 2020, compared to those from 2018. If Brazil maintains deforestation at this pace, it will be difficult to meet the emission reduction targets agreed at COP21.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Air Pollutants/analysis , Air Pollution/analysis , Brazil , Environmental Monitoring , Gases/analysis , Humans , Particulate Matter/analysis , SARS-CoV-2 , Vehicle Emissions/analysis
2.
Environ Sci Pollut Res Int ; 26(34): 35082-35093, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31676940

ABSTRACT

The replacement of fossil-based fuels by renewable fuels (biofuels) was proposed in the IPCC report, as an alternative to reduce greenhouse gas emission and reach out to a low-carbon economy. On this perspective, the Brazilian government had implemented a renewable energy program based on the use of ethanol in the transport sector. This work evaluates the scenario of pollutant gas emissions and particulate material that comes from the biomass burning process involved in ethanol production cycle, in the city of Campos dos Goytacazes, Brazil. The gases and particulate material emitted by sugarcane and bagasse burning processes-the last one in energy co-generation mills-were analyzed. A laboratory-controlled burning of both samples was realized in an oven with temperature ramp from 250 to 400 °C, at a regular rate of 50 °C. The gas samples were collected directly from the oven's exhaust pipe. The particulates obtained were the residual material taken out of the burned samples: a powder with the aspect of soot. A photoacoustic spectroscopy system coupled with quantum cascade laser and electrochemical analyzers was used to measure the emission of polluting gases such as N2O, CO2, CO, NOx (NO, NO2), and SO2 in ppmv range. Fluorescent X-ray spectrometry was applied to evaluate the chemical composition of particulate material, enabling the identification of elements such as Si, Al, Ca, K, Fe, S, P, Ti, Mn, Cu, Zn, Sc, V, Cu, and Sr.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring , Ethanol/analysis , Biofuels/analysis , Biomass , Brazil , Carbon/analysis , Dust/analysis , Environment , Fossil Fuels/analysis , Gases/analysis , Soot/analysis , Vehicle Emissions/analysis
3.
Appl Opt ; 45(20): 4966-71, 2006 Jul 10.
Article in English | MEDLINE | ID: mdl-16807606

ABSTRACT

A pulsed quantum-cascade distributed-feedback laser, temperature tunable from -41 degrees C to +31.6 degrees C, and a resonant differential photoacoustic detector are used to measure trace-gas concentrations to as low as 66 parts per 10(9) by volume (ppbv) ammonia at a low laser power of 2 mW. Good agreement between the experimental spectrum and the simulated HITRAN spectrum of NH3 is found in the spectral range between 1046 and 1052 cm(-1). A detection limit of 30 ppbv ammonia at a signal-to-noise ratio of 1 was obtained with the quantum-cascade laser (QCL) photoacoustic (PA) setup. Concentration changes of approximately 50 ppbv were detectable with this compact and versatile QCL-based PA detection system. The performance of the PA detector, characterized by the product of the incident laser power and the minimum detectable absorption coefficient, was 4.7 x 10-9 W cm(-1).

SELECTION OF CITATIONS
SEARCH DETAIL
...