Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Cancer Res ; 79(1): 183-195, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30425059

ABSTRACT

MicroRNAs (miR) are small noncoding RNAs that regulate gene expression, posttranscription, and manipulate immune responses in different types of cancers. In this study, we identify miR-146a as a negative regulator of immune activation, comparable to immune-checkpoint molecules. miR-146a levels were increased in melanoma microenvironmental tissue, and miR-146a-/- mice survived longer and developed less metastases in comparison with wild-type melanoma-bearing mice. T cells isolated from miR-146a-/- mice revealed higher expression levels of the miR-146a target gene Stat1 and the Stat1-regulated cytokine IFNγ. Neutralization of IFNγ in miR-146a-/- mice decreased survival and increased melanoma metastasis patterns to those of wild-type mice. In vitro, IFNγ reduced melanoma cell migration, cell-cycle activity, and basal metabolic rate. Conversely, IFNγ also increased PD-L1 levels on the melanoma cells, which may counterbalance some of the beneficial effects increasing immune escape in vivo. Combined treatment with a miR-146a antagomiR and anti-PD-1 resulted in improved survival over isotype control or anti-PD-1 treatment alone. In summary, these data show that miR-146a plays a central role within the STAT1/IFNγ axis in the melanoma microenvironment, affecting melanoma migration, proliferation, and mitochondrial fitness as well as PD-L1 levels. Additionally, combined inhibition of PD-1 and miR-146a could be a novel strategy to enhance antitumor immune response elicited by checkpoint therapy. SIGNIFICANCE: These findings identify a microRNA-based mechanism by which melanoma cells escape the immune system, providing a new therapeutic strategy to improve the current management of patients with melanoma.


Subject(s)
Gene Expression Regulation, Neoplastic , Melanoma/immunology , MicroRNAs/metabolism , MicroRNAs/physiology , Skin/immunology , Tumor Microenvironment/immunology , Animals , B7-H1 Antigen/metabolism , Case-Control Studies , Cell Movement , Humans , Interferon-gamma , Melanoma/genetics , Melanoma/metabolism , Melanoma/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , MicroRNAs/genetics , Prognosis , STAT1 Transcription Factor/genetics , STAT1 Transcription Factor/metabolism , Skin/metabolism , Tumor Cells, Cultured
2.
Immun Inflamm Dis ; 5(2): 163-176, 2017 06.
Article in English | MEDLINE | ID: mdl-28474508

ABSTRACT

INTRODUCTION: Complete Freund's Adjuvant (CFA) emulsified with an antigen is a widely used method to induce autoimmune disease in animal models, yet the contribution of CFA to the immune response is not well understood. We compared the effectiveness of CFA with Incomplete Freund's Adjuvant (IFA) or TiterMax Gold Adjuvant (TMax) in experimental autoimmune myocarditis (EAM) in male mice. METHODS: EAM was induced in A/J, BALB/c, and IL6KO BALB/c male mice by injection of the myocarditogenic peptide in CFA, IFA, or TMax on days 0 and 7. EAM severity was analyzed by histology on day 21. In addition, specific flow cytometry outcomes were evaluated on day 21. RESULTS: Only mice immunized with CFA and myocarditogenic peptide on both days 0 and 7 developed substantial myocarditis as measured by histology. We observed a significantly increased level of IL6 in the spleen 3 days after CFA immunization. In the spleen and heart on day 21, there was an expansion of myeloid cells in CFA-immunized mice, as compared to IFA or TMax-immunized animals. Recombinant IL-6 at the time of IFA immunization partially restored susceptibility of the mice to EAM. We also treated EAM-resistant IL-6 knockout mice with recombinant IL-6 around the time of the first immunization, on days -1 to 2, completely restoring disease susceptibility, showing that the requirement for IL-6 coincides with primary immunization. Examining APC populations in the lymph node draining the immunization site evidenced the contribution of IL-6 to the CFA-dependence of EAM was through controlling local dendritic cell (DC) trafficking. CONCLUSIONS: CFA used with myocarditogenic peptide twice is required to induce EAM in both A/J and Balb/c mice. Although IFA and TiterMax induce antibody responses, only CFA preferentially induced autoantigen-specific responses. CFA expands monocytes in the heart and in the spleen. IL-6 signaling is required during short window around primary immunization to induce EAM. In addition, IL-6 deficient mice resistance to EAM could be reversed by injecting IL-6 around first immunization. IL-6 expands dendritic cell and monocytic populations and ultimately leads to a robust T-cell driven immune response in CFA immunized mice.


Subject(s)
Autoimmune Diseases/chemically induced , Autoimmune Diseases/immunology , Freund's Adjuvant/adverse effects , Interleukin-6/immunology , Myocarditis/chemically induced , Myocarditis/immunology , Animals , Autoimmune Diseases/genetics , Autoimmune Diseases/pathology , Freund's Adjuvant/pharmacology , Interleukin-6/genetics , Mice , Mice, Inbred BALB C , Mice, Knockout , Myocarditis/genetics , Myocarditis/pathology
3.
EMBO J ; 35(2): 143-61, 2016 Jan 18.
Article in English | MEDLINE | ID: mdl-26657898

ABSTRACT

Despite being mutated in cancer and RASopathies, the role of the activation segment (AS) has not been addressed for B-Raf signaling in vivo. Here, we generated a conditional knock-in mouse allowing the expression of the B-Raf(AVKA) mutant in which the AS phosphoacceptor sites T599 and S602 are replaced by alanine residues. Surprisingly, despite producing a kinase-impaired protein, the Braf(AVKA) allele does not phenocopy the lethality of Braf-knockout or paradoxically acting knock-in alleles. However, Braf(AVKA) mice display abnormalities in the hematopoietic system, a distinct facial morphology, reduced ERK pathway activity in the brain, and an abnormal gait. This phenotype suggests that maximum B-Raf activity is required for the proper development, function, and maintenance of certain cell populations. By establishing conditional murine embryonic fibroblast cultures, we further show that MEK/ERK phosphorylation and the immediate early gene response toward growth factors are impaired in the presence of B-Raf(AVKA). Importantly, alanine substitution of T599/S602 impairs the transformation potential of oncogenic non-V600E B-Raf mutants and a fusion protein, suggesting that blocking their phosphorylation could represent an alternative strategy to ATP-competitive inhibitors.


Subject(s)
Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , Animals , Cell Proliferation/genetics , Cell Proliferation/physiology , Cells, Cultured , Enzyme Activation/genetics , Enzyme Activation/physiology , Female , MAP Kinase Signaling System/genetics , MAP Kinase Signaling System/radiation effects , Male , Mice , Mitogen-Activated Protein Kinase Kinases/metabolism , Models, Biological , Mutation , Phosphorylation , Signal Transduction/genetics , Signal Transduction/physiology
4.
Blood ; 125(20): 3183-92, 2015 May 14.
Article in English | MEDLINE | ID: mdl-25814531

ABSTRACT

Interleukin (IL)-33 binding to the receptor suppression of tumorigenicity 2 (ST2) produces pro-inflammatory and anti-inflammatory effects. Increased levels of soluble ST2 (sST2) are a biomarker for steroid-refractory graft-versus-host disease (GVHD) and mortality. However, whether sST2 has a role as an immune modulator or only as a biomarker during GVHD was unclear. We show increased IL-33 production by nonhematopoietic cells in the gastrointestinal (GI) tract in mice post-conditioning and patients during GVHD. Exogenous IL-33 administration during the peak inflammatory response worsened GVHD. Conversely, GVHD lethality and tumor necrosis factor-α production was significantly reduced in il33(-/-) recipients. ST2 was upregulated on murine and human alloreactive T cells and sST2 increased as experimental GVHD progressed. Concordantly, st2(-/-) vs wild-type (WT) donor T cells had a marked reduction in GVHD lethality and GI histopathology. Alloantigen-induced IL-18 receptor upregulation was lower in st2(-/-) T cells, and linked to reduced interferon-γ production by st2(-/-) vs WT T cells during GVHD. Blockade of IL-33/ST2 interactions during allogeneic-hematopoietic cell transplantation by exogenous ST2-Fc infusions had a marked reduction in GVHD lethality, indicating a role of ST2 as a decoy receptor modulating GVHD. Together, these studies point to the IL-33/ST2 axis as a novel and potent target for GVHD therapy.


Subject(s)
Graft vs Host Disease/immunology , Graft vs Host Disease/metabolism , Interleukins/metabolism , Receptors, Cell Surface/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Acute Disease , Animals , Cluster Analysis , Disease Models, Animal , Gene Expression , Gene Expression Profiling , Graft vs Host Disease/diagnosis , Graft vs Host Disease/genetics , Graft vs Host Disease/mortality , Hematopoietic Stem Cell Transplantation/adverse effects , Humans , Interferon-gamma/biosynthesis , Interleukin-1 Receptor-Like 1 Protein , Interleukin-33 , Interleukins/genetics , Intestinal Mucosa/metabolism , Intestines/pathology , Intestines/radiation effects , Isoantigens/immunology , Mice , Mice, Knockout , Receptors, Cell Surface/genetics , Severity of Illness Index , Tissue Donors , Transplantation Conditioning , Transplantation, Homologous
5.
Blood ; 124(16): 2586-95, 2014 Oct 16.
Article in English | MEDLINE | ID: mdl-25205119

ABSTRACT

Acute graft-versus-host disease (GVHD) limits the success of allogeneic hematopoietic cell transplantation (allo-HCT); therefore, a better understanding of its biology may improve therapeutic options. We observed miR-146a up-regulation in T cells of mice developing acute GVHD compared with untreated mice. Transplanting miR-146a(-/-) T cells caused increased GVHD severity, elevated tumor necrosis factor (TNF) serum levels, and reduced survival. TNF receptor-associated factor 6 (TRAF6), a verified target of miR-146a, was up-regulated in miR-146a(-/-) T cells following alloantigen stimulation. Higher TRAF6 levels translated into increased nuclear factor-κB activity and TNF production in miR-146a(-/-) T cells. Conversely, the detrimental effect of miR-146a deficiency in T cells was antagonized by TNF blockade, whereas phytochemical induction of miR-146a or its overexpression using a miR-146a mimic reduced GVHD severity. In humans, the minor genotype of the single nucleotide polymorphism rs2910164 in HCT donors, which reduces expression of miR-146a, was associated with severe acute GVHD (grade III/IV). We show that miR-146a functions as a negative regulator of donor T cells in GVHD by targeting TRAF6, leading to reduced TNF transcription. Because miR-146a expression can be exogenously enhanced, our results provide a novel targeted molecular approach to mitigate GVHD.


Subject(s)
Graft vs Host Disease/metabolism , MicroRNAs/metabolism , T-Lymphocytes/metabolism , TNF Receptor-Associated Factor 6/metabolism , Tumor Necrosis Factor-alpha/metabolism , Animals , Gene Deletion , Graft vs Host Disease/blood , Graft vs Host Disease/etiology , Graft vs Host Disease/genetics , Hematopoietic Stem Cell Transplantation/adverse effects , Humans , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , MicroRNAs/genetics , Polymorphism, Single Nucleotide , T-Lymphocytes/transplantation , Tumor Necrosis Factor-alpha/blood , Up-Regulation
6.
J Am Soc Nephrol ; 25(4): 707-16, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24408871

ABSTRACT

Podocyte loss is a major determinant of progressive CKD. Although recent studies showed that a subset of parietal epithelial cells can serve as podocyte progenitors, the role of podocyte turnover and regeneration in repair, aging, and nephron loss remains unclear. Here, we combined genetic fate mapping with highly efficient podocyte isolation protocols to precisely quantify podocyte turnover and regeneration. We demonstrate that parietal epithelial cells can give rise to fully differentiated visceral epithelial cells indistinguishable from resident podocytes and that limited podocyte renewal occurs in a diphtheria toxin model of acute podocyte ablation. In contrast, the compensatory programs initiated in response to nephron loss evoke glomerular hypertrophy, but not de novo podocyte generation. In addition, no turnover of podocytes could be detected in aging mice under physiologic conditions. In the absence of podocyte replacement, characteristic features of aging mouse kidneys included progressive accumulation of oxidized proteins, deposits of protein aggregates, loss of podocytes, and glomerulosclerosis. In summary, quantitative investigation of podocyte regeneration in vivo provides novel insights into the mechanism and capacity of podocyte turnover and regeneration in mice. Our data reveal that podocyte generation is mainly confined to glomerular development and may occur after acute glomerular injury, but it fails to regenerate podocytes in aging kidneys or in response to nephron loss.


Subject(s)
Aging/pathology , Kidney Glomerulus/pathology , Podocytes/physiology , Animals , Flow Cytometry , Hypertrophy , Mice , Regeneration
7.
J Immunol ; 191(8): 4038-47, 2013 Oct 15.
Article in English | MEDLINE | ID: mdl-24048893

ABSTRACT

CD4(+) T cells play a central role in inflammatory heart disease, implicating a cytokine product associated with Th cell effector function as a necessary mediator of this pathophysiology. IFN-γ-deficient mice developed severe experimental autoimmune myocarditis (EAM), in which mice are immunized with cardiac myosin peptide, whereas IL-17A-deficient mice were protected from progression to dilated cardiomyopathy. We generated IFN-γ(-/-)IL-17A(-/-) mice to assess whether IL-17 signaling was responsible for the severe EAM of IFN-γ(-/-) mice. Surprisingly, IFN-γ(-/-)IL-17A(-/-) mice developed a rapidly fatal EAM. Eosinophils constituted a third of infiltrating leukocytes, qualifying this disease as eosinophilic myocarditis. We found increased cardiac production of CCL11/eotaxin, as well as Th2 deviation, among heart-infiltrating CD4(+) cells. Ablation of eosinophil development improved survival of IFN-γ(-/-)IL-17A(-/-) mice, demonstrating the necessity of eosinophils in fatal heart failure. The severe and rapidly fatal autoimmune inflammation that developed in the combined absence of IFN-γ and IL-17A constitutes a novel model of eosinophilic heart disease in humans. This is also, to our knowledge, the first demonstration that eosinophils have the capacity to act as necessary mediators of morbidity in an autoimmune process.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Eosinophils/immunology , Interferon-gamma/deficiency , Interleukin-17/deficiency , Myocarditis/immunology , Animals , Autoimmune Diseases/immunology , Autoimmune Diseases/prevention & control , Biomarkers , Cardiac Myosins/immunology , Cardiomyopathies/immunology , Chemokine CCL11/biosynthesis , Inflammation , Interferon-gamma/genetics , Interferon-gamma/immunology , Interleukin-17/genetics , Interleukin-17/immunology , Male , Mice , Mice, Inbred BALB C , Mice, Knockout , Myocarditis/genetics , Myocarditis/prevention & control , Myocardium/immunology , Myositis
8.
J Exp Med ; 210(10): 1899-910, 2013 Sep 23.
Article in English | MEDLINE | ID: mdl-23980097

ABSTRACT

The success of allogeneic hematopoietic cell transplantation is limited by acute graft-versus-host disease (GvHD), a severe complication accompanied by high mortality rates. Yet, the molecular mechanisms initiating this disease remain poorly defined. In this study, we show that, after conditioning therapy, intestinal commensal bacteria and the damage-associated molecular pattern uric acid contribute to Nlrp3 inflammasome-mediated IL-1ß production and that gastrointestinal decontamination and uric acid depletion reduced GvHD severity. Early blockade of IL-1ß or genetic deficiency of the IL-1 receptor in dendritic cells (DCs) and T cells improved survival. The Nlrp3 inflammasome components Nlrp3 and Asc, which are required for pro-IL-1ß cleavage, were critical for the full manifestation of GvHD. In transplanted mice, IL-1ß originated from multiple intestinal cell compartments and exerted its effects on DCs and T cells, the latter being preferentially skewed toward Th17. Compatible with these mouse data, increased levels of active caspase-1 and IL-1ß were found in circulating leukocytes and intestinal GvHD lesions of patients. Thus, the identification of a crucial role for the Nlrp3 inflammasome sheds new light on the pathogenesis of GvHD and opens a potential new avenue for the targeted therapy of this severe complication.


Subject(s)
Carrier Proteins/metabolism , Graft vs Host Disease/etiology , Inflammasomes/metabolism , Acute Disease , Animals , Apoptosis Regulatory Proteins , CARD Signaling Adaptor Proteins , Carrier Proteins/genetics , Caspase 1/metabolism , Cytoskeletal Proteins/deficiency , Dendritic Cells/immunology , Dendritic Cells/metabolism , Graft vs Host Disease/mortality , Hematopoietic Stem Cell Transplantation/adverse effects , Humans , Interleukin-17/biosynthesis , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Intestinal Mucosa/metabolism , Intestines/immunology , Intestines/microbiology , Mice , Mice, Knockout , NLR Family, Pyrin Domain-Containing 3 Protein , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Th17 Cells/immunology , Th17 Cells/metabolism , Transplantation, Homologous , Tumor Necrosis Factors/biosynthesis
9.
BMC Urol ; 11: 1, 2011 Jan 20.
Article in English | MEDLINE | ID: mdl-21251276

ABSTRACT

BACKGROUND: Unimpaired HLA class I antigen presentation is a prerequisite for the recognition of tumor cells by cytotoxic T lymphocytes and thus essential for the success of anticancer immunotherapeutic concepts. Several approaches have been taken in the immunotherapy of metastatic renal cell carcinoma (RCC), however of limited success. HLA loss or down-regulation have often been reported and might interfere with immunotherapeutic approaches aimed at the recognition of HLA-presented peptides. METHODS: We employed a quantitative method of molecular analysis for the comparison of HLA amounts on primary tumor, normal kidney and metastases of RCC, using Edman degradation. We analyzed a series of 47 RCC samples including corresponding renal parenchyma, local lymph node metastases and distant metastases. RESULTS: Results of quantitative Edman degradation revealed significantly higher HLA yields on primary tumor and metastases compared to normal kidney tissue. This effect was shown not to result from infiltrating immune cells, since tumor-infiltrating lymphocytes had no influence on the overall HLA recovery from tumor tissue. Unexpectedly, we found a higher amount of HLA class I molecules on distant metastases compared to local lymph node metastases. CONCLUSION: Edman degradation allows the direct quantitative comparison of HLA class I protein expression by tumor or normal tissue and metastases of RCC patients. Our results raise hopes for improving the success and effectiveness of future immunotherapeutic concepts for metastatic RCC.


Subject(s)
Carcinoma, Renal Cell/chemistry , Carcinoma, Renal Cell/secondary , HLA Antigens/analysis , Kidney Neoplasms/chemistry , Kidney Neoplasms/secondary , Amino Acid Sequence , Humans , Molecular Sequence Data , Organophosphorus Compounds/chemistry , Sequence Analysis, Protein/methods
10.
Br J Haematol ; 151(2): 167-78, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20738306

ABSTRACT

Direct contact with stromal cells protects chronic lymphocytic leukaemia (CLL) B cells from chemotherapy-induced apoptosis in vitro. Blockade of CXCR4 signalling antagonizes stroma-mediated interactions and restores CLL chemosensitivity. In vivo, administration of CXCR4 antagonists effectively mobilizes haematopoietic progenitor cells. Therefore, combinations of CXCR4 blockade and cytoreductive treatment with selective activity on CLL cells may avoid potential haematotoxicity. Hence, we tested CXCR4 antagonists in the context of passive and active immunotherapeutic approaches. We evaluated how efficiently rituximab, alemtuzumab and cytotoxic T cells killed CLL cells cocultured with stromal cells in the presence and absence of a CXCR4 antagonist. Stromal cell contact attenuated rituximab- and alemtuzumab-induced complement-dependent cytotoxicity of CLL cells. Addition of CXCR4 antagonists abrogated the protective effect of stroma. In contrast, stromal cells did not impair antibody-dependent cell-mediated cytotoxicity and cytotoxicity induced by activated T cells. Destruction of microtubules in CLL target cells restored the protective effect of stroma coculture for CLL cells during Natural Killer cell attack by preventing mitochondrial relocalization towards the immunological synapse. Our data identify the combination of CXCR4 antagonists with passive - but not active - immunotherapy as a promising potential treatment concept in CLL.


Subject(s)
Antibodies, Monoclonal/pharmacology , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Receptors, CXCR4/antagonists & inhibitors , Adjuvants, Immunologic/pharmacology , Alemtuzumab , Animals , Antibodies, Monoclonal, Humanized , Antibodies, Monoclonal, Murine-Derived/pharmacology , Antibodies, Neoplasm/pharmacology , Antibody-Dependent Cell Cytotoxicity/drug effects , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Apoptosis/immunology , Apoptosis/physiology , Cell Communication/immunology , Coculture Techniques , Cytotoxicity, Immunologic/drug effects , Drug Resistance, Neoplasm/immunology , Drug Screening Assays, Antitumor , Humans , Immunotherapy/methods , Leukemia, Lymphocytic, Chronic, B-Cell/immunology , Mice , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/physiology , Receptors, CXCR4/physiology , Rituximab , Stromal Cells/physiology , T-Lymphocytes, Cytotoxic/immunology , Tumor Cells, Cultured , Vidarabine/analogs & derivatives , Vidarabine/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...