Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Behav Brain Res ; 446: 114418, 2023 05 28.
Article in English | MEDLINE | ID: mdl-37004789

ABSTRACT

Social stressors negatively impact social function, and this is mediated by the amygdala across species. Social defeat stress is an ethologically relevant social stressor in adult male rats that increases social avoidance, anhedonia, and anxiety-like behaviors. While amygdala manipulations can mitigate the negative effects of social stressors, the impact of social defeat on the basomedial subregion of the amygdala is relatively unclear. Understanding the role of the basomedial amygdala may be especially important, as prior work has demonstrated that it drives physiological responses to stress, including heart-rate related responses to social novelty. In the present study, we quantified the impact of social defeat on social behavior and basomedial amygdala neuronal responses using anesthetized in vivo extracellular electrophysiology in adult male Sprague Dawley rats. Socially defeated rats displayed increased social avoidance behavior towards novel Sprague Dawley conspecifics and reduced time initiating social interactions relative to controls. This effect was most pronounced in rats that displayed defensive, boxing behavior during social defeat sessions. We next found that socially defeated rats showed lower overall basomedial amygdala firing and altered the distribution of neuronal responses relative to the control condition. We separated neurons into low and high Hz firing groups, and neuronal firing was reduced in both low and high Hz groups but in a slightly different manner. This work demonstrates that basomedial amygdala activity is sensitive to social stress, displaying a distinct pattern of social stress-driven activity relative to other amygdala subregions.


Subject(s)
Basolateral Nuclear Complex , Social Defeat , Rats , Animals , Male , Rats, Sprague-Dawley , Amygdala , Neurons , Stress, Psychological , Social Behavior
2.
Psychopharmacology (Berl) ; 240(3): 647-671, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36645464

ABSTRACT

RATIONALE: Conditions with sustained low-grade inflammation have high comorbidity with depression and anxiety and are associated with social withdrawal. The basolateral amygdala (BLA) is critical for affective and social behaviors and is sensitive to inflammatory challenges. Large systemic doses of lipopolysaccharide (LPS) initiate peripheral inflammation, increase BLA neuronal activity, and disrupt social and affective measures in rodents. However, LPS doses commonly used in behavioral studies are high enough to evoke sickness syndrome, which can confound interpretation of amygdala-associated behaviors. OBJECTIVES AND METHODS: The objectives of this study were to find a LPS dose that triggers mild peripheral inflammation but not observable sickness syndrome in adult male rats, to test the effects of sustained mild inflammation on BLA and social behaviors. To accomplish this, we administered single doses of LPS (0-100 µg/kg, intraperitoneally) and measured open field behavior, or repeated LPS (5 µg/kg, 3 consecutive days), and measured BLA neuronal firing, social interaction, and elevated plus maze behavior. RESULTS: Repeated low-dose LPS decreased BLA neuron firing rate but increased the total number of active BLA neurons. Repeated low-dose LPS also caused early disengagement during social bouts and less anogenital investigation and an overall pattern of heightened social caution associated with reduced gain of social familiarity over the course of a social session. CONCLUSIONS: These results provide evidence for parallel shifts in social interaction and amygdala activity caused by prolonged mild inflammation. This effect of inflammation may contribute to social symptoms associated with comorbid depression and chronic inflammatory conditions.


Subject(s)
Basolateral Nuclear Complex , Rats , Male , Animals , Lipopolysaccharides/pharmacology , Amygdala , Social Behavior , Anxiety , Inflammation
3.
Immune Netw ; 21(3): e18, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34277108

ABSTRACT

TLR signaling is critical for broad scale immune recognition of pathogens and/or danger molecules. TLRs are particularly important for the activation and the maturation of cells comprising the innate immune response. In recent years it has become apparent that several different TLRs regulate the function of lymphocytes as well, albeit to a lesser degree compared to innate immunity. TLR2 heterodimerizes with either TLR1 or TLR6 to broadly recognize bacterial lipopeptides as well as several danger-associated molecular patterns. In general, TLR2 signaling promotes immune cell activation leading to tissue inflammation, which is advantageous for combating an infection. Conversely, inappropriate or dysfunctional TLR2 signaling leading to an overactive inflammatory response could be detrimental during sterile inflammation and autoimmune disease. This review will highlight and discuss recent research advances linking TLR2 engagement to autoimmune inflammation.

SELECTION OF CITATIONS
SEARCH DETAIL
...