Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Bioeng Biotechnol ; 11: 1190712, 2023.
Article in English | MEDLINE | ID: mdl-37397970

ABSTRACT

Osteoarthritis of the hip is a common condition that affects older adults. Total hip replacement is the end-stage treatment to relief pain and improve joint function. Little is known about the mechanical load distribution during the activity of bipedal stance, which is an important daily activity for older adults who need to rest more frequently. This study investigated the distribution of the hip and knee joint moments during bipedal stance in patients with unilateral hip osteoarthritis and how the distribution changed 1 year after total hip replacement. Kinematic and kinetic data from bipedal stance were recorded. External hip and knee adduction moments were calculated and load distribution over both limbs was calculated using the symmetry angle. Preoperatively, the non-affected limb carried 10% more body weight than the affected limb when standing on two legs. Moreover, the mean external hip and knee adduction moments of the non-affected limb were increased compared to the affected limb. At follow-up no significant differences were observed between the patients' limbs. Preoperative and postoperative changes in hip adduction moment were mainly explained by the combination of the vertical ground reaction force and the hip adduction angle. Stance width also explained changes in the hip and knee adduction moments of the affected leg. Furthermore, as with walking, bipedal standing also showed an asymmetric mechanical load distribution in patients with unilateral hip osteoarthritis. Overall, the findings suggest the need for preventive therapy concepts that focus not only on walking but also on optimizing stance towards a balanced load distribution of both legs.

2.
Front Bioeng Biotechnol ; 9: 756460, 2021.
Article in English | MEDLINE | ID: mdl-34805115

ABSTRACT

Patients with unilateral hip osteoarthritis show a characteristic gait pattern in which they unload the affected leg and overload the unaffected leg. Information on the gait characteristics of patients with bilateral hip osteoarthritis is very limited. The main purposes of this study were to investigate whether the gait pattern of both legs of patients with bilateral hip osteoarthritis deviates from healthy controls and whether bilateral hip osteoarthritis patients show a more symmetrical joint load compared to unilateral hip osteoarthritis patients. In this prospective study, 26 patients with bilateral hip osteoarthritis, 26 patients with unilateral hip osteoarthritis and 26 healthy controls were included. The three groups were matched for gender, age and walking speed. Patients were scheduled for a unilateral total hip arthroplasty on the more affected/more painful side. All participants underwent a three-dimensional gait analysis. Gait kinematics and gait kinetics of patients and controls were compared using Statistical Parametric Mapping. Corrected for speed, the gait kinematics and kinetics of both legs of patients with bilateral hip osteoarthritis differed from healthy controls. Bilateral patients had symmetrical knee joint loading, in contrast to the asymmetrical knee joint loading in unilateral hip osteoarthritis patients. The ipsilateral leg of the bilateral patients could be included in studies in addition to unilateral hip osteoarthritis patients as no differences were found. Although patients with bilateral hip osteoarthritis show more symmetrical frontal plane knee joint moments, a pathological external knee adduction moment in the second half of stance was present in the ipsilateral leg in patients with unilateral and bilateral hip osteoarthritis. The lateral adjustment of the knee adduction moment may initiate or accelerate progression of degenerative changes in the lateral compartment of the knee.

3.
Med Eng Phys ; 38(9): 940-5, 2016 09.
Article in English | MEDLINE | ID: mdl-27387903

ABSTRACT

A numerical-experimental, proof-of-concept approach is described to characterize the mechanical material behavior of the human heel pad under impact conditions similar to a heel strike while running. A 3D finite-element model of the right foot of a healthy female subject was generated using magnetic resonance imaging. Based on quasi-static experimental testing of the subject's heel pad, force-displacement data was obtained. Using this experimental data as well as a numerical optimization algorithm, an inverse finite-element analysis and the 3D model, heel pad hyperelastic (long-term) material parameters were determined. Applying the same methodology, based on the dynamic experimental data from the impact test and obtained long-term parameters, linear viscoelastic parameters were established with a Prony series. Model validation was performed employing quasi-static and dynamic force-displacement data. Coefficients of determination when comparing model to experimental data during quasi-static and dynamic (initial velocity: 1480mm/s) procedure were R(2) = 0.999 and R(2) = 0.990, respectively. Knowledge of these heel pad material parameters enables realistic numerical analysis to evaluate internal stress and strain in the heel pad during different quasi-static or dynamic load conditions.


Subject(s)
Finite Element Analysis , Heel , Materials Testing/methods , Mechanical Phenomena , Adult , Biomechanical Phenomena , Elasticity , Female , Heel/diagnostic imaging , Humans , Magnetic Resonance Imaging , Materials Testing/instrumentation
4.
Eur J Neurosci ; 25(2): 519-28, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17284194

ABSTRACT

A common feature of all epileptic syndromes is the repetitive occurrence of pathological patterns of synchronous neuronal activity, usually combined with increased neuronal discharge rates. Inhibitory interneurons of the hippocampal formation control both neuronal synchronization as well as the global level of activity and are therefore of crucial importance for epilepsy. Recent evidence suggests that changes in synaptic inhibition during temporal lobe epilepsy are rather specific, resulting from selective death or alteration of interneurons in specific hippocampal layers. Hence, epilepsy-induced changes have to be analysed separately for different types of interneurons. Here, we focused on GABAergic neurons located at the border between stratum radiatum and stratum lacunosum-moleculare of hippocampal area CA1 (SRL interneurons), which are included in feedforward inhibitory circuits. In chronically epileptic rats at 6-8 months after pilocarpine-induced status epilepticus, frequencies of spontaneous and miniature inhibitory postsynaptic currents were reduced, yielding an almost three-fold increase in excitation-inhibition ratio. Consistently, action potential frequency of SRL interneurons was about two-fold enhanced. Morphological alterations of the interneurons indicate that these functional changes were accompanied by remodelling of the local network, probably resulting in a loss of functional inhibitory synapses without conceivable cell death. Our data indicate a strong increase in activity of interneurons in dendritic layers of the chronically epileptic CA1 region. This alteration may enhance feedforward inhibition and rhythmogenesis and--together with specific changes in other interneurons--contribute to seizure susceptibility and pathological synchronization.


Subject(s)
Epilepsy, Temporal Lobe/pathology , Hippocampus/pathology , Interneurons/physiology , Neural Inhibition/physiology , Synaptic Transmission/physiology , Animals , Biotin/analogs & derivatives , Biotin/metabolism , Interneurons/drug effects , Male , Membrane Potentials/drug effects , Membrane Potentials/physiology , Muscarinic Agonists/pharmacology , Nerve Net/pathology , Nerve Net/physiopathology , Neural Inhibition/drug effects , Pilocarpine/pharmacology , Rats , Rats, Wistar , Synaptic Transmission/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...