Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Med ; 27(1): 133, 2021 10 21.
Article in English | MEDLINE | ID: mdl-34674633

ABSTRACT

Acetylcholine (ACh) decreases blood pressure by stimulating endothelium nitric oxide-dependent vasodilation in resistance arterioles. Normal plasma contains choline acetyltransferase (ChAT) and its biosynthetic product ACh at appreciable concentrations to potentially act upon the endothelium to affect blood pressure. Recently we discovered a T-cell subset expressing ChAT (TChAT), whereby genetic ablation of ChAT in these cells produces hypertension, indicating that production of ACh by TChAT regulates blood pressure. Accordingly, we reasoned that increasing systemic ChAT concentrations might induce vasodilation and reduce blood pressure. To evaluate this possibility, recombinant ChAT was administered intraperitoneally to mice having angiotensin II-induced hypertension. This intervention significantly and dose-dependently decreased mean arterial pressure. ChAT-mediated attenuation of blood pressure was reversed by administration of the nitric oxide synthesis blocker L-nitro arginine methyl ester, indicating ChAT administration decreases blood pressure by stimulating nitic oxide dependent vasodilation, consistent with an effect of ACh on the endothelium. To prolong the half life of circulating ChAT, the molecule was modified by covalently attaching repeating units of polyethylene glycol (PEG), resulting in enzymatically active PEG-ChAT. Administration of PEG-ChAT to hypertensive mice decreased mean arterial pressure with a longer response duration when compared to ChAT. Together these findings suggest further studies are warranted on the role of ChAT in hypertension.


Subject(s)
Blood Pressure/drug effects , Choline O-Acetyltransferase/pharmacology , Disease Models, Animal , Hypertension/prevention & control , Recombinant Proteins/pharmacology , Acetylcholine/metabolism , Angiotensin II , Animals , Choline O-Acetyltransferase/genetics , Choline O-Acetyltransferase/metabolism , Heart Rate/drug effects , Humans , Hypertension/chemically induced , Hypertension/physiopathology , Male , Mice, Inbred C57BL , Nitric Oxide/metabolism , Polyethylene Glycols/metabolism , Recombinant Proteins/administration & dosage , Recombinant Proteins/metabolism , Vasodilation/drug effects
2.
Bioelectron Med ; 4: 3, 2018.
Article in English | MEDLINE | ID: mdl-32232079

ABSTRACT

BACKGROUND: The vagus nerve plays an important role in the regulation of organ function, including reflex pathways that regulate immunity and inflammation. Recent studies using genetically modified mice have improved our understanding of molecular mechanisms in the neural control of immunity. However, mapping neural signals transmitted in the vagus nerve in mice has been limited by technical challenges. Here, we have standardized an experimental protocol to record compound action potentials transmitted in the vagus nerve. METHODS: The vagus nerve was isolated in Balb/c and B6.129S mice, and placed either on a hook or cuff electrode. The electrical signals from the vagus nerve were digitized using either a Neuralynx or Plexon data acquisition system. Changes in the vagus nerve activity in response to anesthesia, feeding and administration of bacterial endotoxin were analyzed. RESULTS: We have developed an electrophysiological recording system to record compound action potentials from the cervical vagus nerve in mice. Cuff electrodes significantly reduce background noise and increase the signal to noise ratio as compared to hook electrodes. Baseline vagus nerve activity varies in response to anesthesia depth and food intake. Analysis of vagus neurograms in different mouse strains (Balb/c and C57BL/6) reveal no significant differences in baseline activity. Importantly, vagus neurogramactivity in wild type and TLR4 receptor knock out mice exhibits receptor dependency of endotoxin mediated signals. CONCLUSIONS: These methods for recording vagus neurogram in mice provide a useful tool to further delineate the role of vagus neural pathways in a standardized murine disease model.

3.
Bioelectron Med ; 3: 7-17, 2016.
Article in English | MEDLINE | ID: mdl-30003120

ABSTRACT

The axons of the sensory, or afferent, vagus nerve transmit action potentials to the central nervous system in response to changes in the body's metabolic and physiological status. Recent advances in identifying neural circuits that regulate immune responses to infection, inflammation and injury have revealed that vagus nerve signals regulate the release of cytokines and other factors produced by macrophages. Here we record compound action potentials in the cervical vagus nerve of adult mice and reveal the specific activity that occurs following administration of the proinflammatory cytokines tumor necrosis factor (TNF) and interleukin 1ß (IL-1ß). Importantly, the afferent vagus neurograms generated by TNF exposure are abolished in double knockout mice lacking TNF receptors 1 and 2 (TNF-R1/2KO), whereas IL-1ß-specific neurograms are eliminated in knockout mice lacking IL-1ß receptor (IL-1RKO). Conversely, TNF neurograms are preserved in IL-1RKO mice, and IL-1ß neurograms are unchanged in TNF-R1/2KO mice. Analysis of the temporal dynamics and power spectral characteristics of afferent vagus neurograms for TNF and IL-1ß reveals cytokine-selective signals. The nodose ganglion contains the cell bodies of the sensory neurons whose axons run through the vagus nerve. The nodose neurons express receptors for TNF and IL-1ß, and we show that exposing them to TNF and IL-1ß significantly stimulates their calcium uptake. Together these results indicate that afferent vagus signals in response to cytokines provide a basic model of nervous system sensing of immune responses.

4.
PLoS One ; 9(8): e103992, 2014.
Article in English | MEDLINE | ID: mdl-25127031

ABSTRACT

Inflammatory bowel disease (IBD) is chronic inflammation of the gastrointestinal tract that affects millions of people worldwide. Although the etiology of IBD is not clear, it is known that products from stressed cells and enteric microbes promote intestinal inflammation. High mobility group box 1 (HMGB1), originally identified as a nuclear DNA binding protein, is a cytokine-like protein mediator implicated in infection, sterile injury, autoimmune disease, and IBD. Elevated levels of HMGB1 have been detected in inflamed human intestinal tissues and in feces of IBD patients and mouse models of colitis. Neutralizing HMGB1 activity by administration of anti-HMGB1 antibodies or HMGB1-specific antagonist improves clinical outcomes in animal models of colitis. Since HMGB1 binds to DNA with high affinity, here we developed a novel strategy to sequester HMGB1 using DNA immobilized on sepharose beads. Screening of DNA-bead constructs revealed that B2 beads, one linear form of DNA conjugated beads, bind HMGB1 with high affinity, capture HMGB1 ex vivo from endotoxin-stimulated RAW 264.7 cell supernatant and from feces of mice with colitis. Oral administration of B2 DNA beads significantly improved body weight, reduced colon injury, and suppressed colonic and circulating cytokine levels in mice with spontaneous colitis (IL-10 knockout) and with dextran sulfate sodium-induced colitis. Thus, DNA beads reduce inflammation by sequestering HMGB1 and may have therapeutic potential for the treatment of IBD.


Subject(s)
Colitis/therapy , HMGB1 Protein/antagonists & inhibitors , Animals , Caco-2 Cells , Colitis/pathology , Colon/pathology , Cytokines/blood , Cytokines/metabolism , Feces/chemistry , HMGB1 Protein/chemistry , HeLa Cells , Humans , Interleukin-10/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Microspheres , Sepharose
SELECTION OF CITATIONS
SEARCH DETAIL
...