Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Parasit Vectors ; 17(1): 255, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38863029

ABSTRACT

BACKGROUND: RNA interference (RNAi) is a target-specific gene silencing method that can be used to determine gene functions and investigate host-pathogen interactions, as well as facilitating the development of ecofriendly pesticides. Commercially available transfection reagents (TRs) can improve the efficacy of RNAi. However, we currently lack a product and protocol for the transfection of insect cell lines with long double-stranded RNA (dsRNA). METHODS: We used agarose gel electrophoresis to determine the capacity of eight TRs to form complexes with long dsRNA. A CellTiter-Glo assay was then used to assess the cytotoxicity of the resulting lipoplexes. We also measured the cellular uptake of dsRNA by fluorescence microscopy using the fluorophore Cy3 as a label. Finally, we analyzed the TRs based on their transfection efficacy and compared the RNAi responses of Aedes albopictus C6/36 and U4.4 cells by knocking down an mCherry reporter Semliki Forest virus in both cell lines. RESULTS: The TRs from Biontex (K4, Metafectene Pro, and Metafectene SI+) showed the best complexing capacity and the lowest dsRNA:TR ratio needed for complete complex formation. Only HiPerFect was unable to complex the dsRNA completely, even at a ratio of 1:9. Most of the complexes containing mCherry-dsRNA were nontoxic at 2 ng/µL, but Lipofectamine 2000 was toxic at 1 ng/µL in U4.4 cells and at 2 ng/µL in C6/36 cells. The transfection of U4.4 cells with mCherry-dsRNA/TR complexes achieved significant knockdown of the virus reporter. Comparison of the RNAi response in C6/36 and U4.4 cells suggested that C6/36 cells lack the antiviral RNAi response because there was no significant knockdown of the virus reporter in any of the treatments. CONCLUSIONS: C6/36 cells have an impaired RNAi response as previously reported. This investigation provides valuable information for future RNAi experiments by showing how to mitigate the adverse effects attributed to TRs. This will facilitate the judicious selection of TRs and transfection conditions conducive to RNAi research in mosquitoes.


Subject(s)
Aedes , RNA Interference , RNA, Double-Stranded , Transfection , RNA, Double-Stranded/genetics , RNA, Double-Stranded/metabolism , Animals , Cell Line , Aedes/genetics , Gene Silencing , Semliki forest virus/genetics , Semliki forest virus/drug effects
2.
Am Nat ; 199(6): E211-E228, 2022 06.
Article in English | MEDLINE | ID: mdl-35580225

ABSTRACT

AbstractHost plant specialization across herbivorous insects varies dramatically, but while the molecular mechanisms of host plant adaptations are increasingly known, we often lack a comprehensive understanding of the selective forces that favor specialization. The milkweed bugs (Heteroptera: Lygaeinae) are ancestrally associated with plants of the Apocynaceae from which they commonly sequester cardiac glycosides for defense, facilitated by resistant Na+/K+-ATPases and adaptations for transport, storage, and discharge of toxins. Here, we show that three Lygaeinae species independently colonized four novel nonapocynaceous hosts that convergently produce cardiac glycosides. A fourth species shifted to a new source of toxins by tolerating and sequestering alkaloids from meadow saffron (Colchicum autumnale, Colchicaceae). Across three milkweed bug species tested, feeding on seeds containing toxins did not improve growth or speed of development and even impaired growth and development in two species, but sequestration mediated protection of milkweed bugs against two natural predators: lacewing larvae and passerine birds. We conclude that physiological preadaptations and convergent phytochemistry facilitated novel specialized host associations. Since toxic seeds did not improve growth but either impaired growth or, at most, had neutral effects, selection by predators on sequestration of defenses, rather than the exploitation of additional profitable dietary resources, can lead to obligatory specialized host associations in otherwise generalist insects.


Subject(s)
Asclepias , Cardiac Glycosides , Heteroptera , Animals , Herbivory , Heteroptera/physiology , Insecta , Plants
SELECTION OF CITATIONS
SEARCH DETAIL
...