Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Mol Biol ; 1912: 3-32, 2019.
Article in English | MEDLINE | ID: mdl-30635888

ABSTRACT

Inflammatory and infectious diseases are among the main causes of morbidity and mortality worldwide. Inflammation is central to maintenance of organismal homeostasis upon infection, tissue damage, and malignancy. It occurs transiently in response to diverse stimuli (e.g., physical, radioactive, infective, pro-allergenic, or toxic), and in some cases may manifest itself in chronic diseases. To limit the potentially deleterious effects of acute or chronic inflammatory responses, complex transcriptional and posttranscriptional regulatory networks have evolved, often involving nonprotein-coding RNAs (ncRNA). MicroRNAs (miRNAs) are a class of posttranscriptional regulators that control mRNA translation and stability. Long ncRNAs (lncRNAs) are a very diverse group of transcripts >200 nt, functioning among others as scaffolds or decoys both in the nucleus and the cytoplasm. By now, it is well established that miRNAs and lncRNAs are implicated in all major cellular processes including control of cell death, proliferation, or metabolism. Extensive research over the last years furthermore revealed a fundamental role of ncRNAs in pathogen recognition and inflammatory responses. This chapter reviews and summarizes the current knowledge on regulatory ncRNA networks in infection and inflammation.


Subject(s)
Communicable Diseases/genetics , Gene Regulatory Networks , Inflammation/genetics , MicroRNAs/metabolism , RNA, Long Noncoding/metabolism , Animals , Cell Death/genetics , Cell Proliferation/genetics , Communicable Diseases/immunology , Gene Expression Regulation , Homeostasis/genetics , Humans , Inflammation/immunology
2.
Sci Rep ; 7(1): 11988, 2017 09 20.
Article in English | MEDLINE | ID: mdl-28931863

ABSTRACT

Immune response in the lung has to protect the huge alveolar surface against pathogens while securing the delicate lung structure. Macrophages and alveolar epithelial cells constitute the first line of defense and together orchestrate the initial steps of host defense. In this study, we analysed the influence of macrophages on type II alveolar epithelial cells during Legionella pneumophila-infection by a systems biology approach combining experimental work and mathematical modelling. We found that L. pneumophila-infected THP-1-derived macrophages provoke a pro-inflammatory activation of neighboring lung epithelial cells, but in addition render them hypo-responsive to direct infection with the same pathogen. We generated a kinetic mathematical model of macrophage activation and identified a paracrine mechanism of macrophage-secreted IL-1ß inducing a prolonged IRAK-1 degradation in lung epithelial cells. This intercellular crosstalk may help to avoid an overwhelming inflammatory response by preventing excessive local secretion of pro-inflammatory cytokines and thereby negatively regulating the recruitment of immune cells to the site of infection. This suggests an important but ambivalent immunomodulatory role of macrophages in lung infection.


Subject(s)
Alveolar Epithelial Cells/immunology , Legionella pneumophila/immunology , Legionnaires' Disease/pathology , Macrophages/immunology , A549 Cells , Coculture Techniques , Humans , Models, Theoretical , Systems Biology , THP-1 Cells
3.
J Infect Dis ; 214(2): 288-99, 2016 07 15.
Article in English | MEDLINE | ID: mdl-26984146

ABSTRACT

Streptococcus pneumoniae causes high mortality as a major pneumonia-inducing pathogen. In pneumonia, control of innate immunity is necessary to prevent organ damage. We assessed the role of microRNAs (miRNAs) as regulators in pneumococcal infection of human macrophages. Exposure of primary blood-derived human macrophages with pneumococci resulted in transcriptional changes in several gene clusters and a significant deregulation of 10 microRNAs. Computational network analysis retrieved miRNA-146a as one putatively important regulator of pneumococci-induced host cell activation. Its induction depended on bacterial structural integrity and was completely inhibited by blocking Toll-like receptor 2 (TLR-2) or depleting its mediator MyD88. Furthermore, induction of miRNA-146a release did not require the autocrine feedback of interleukin 1ß and tumor necrosis factor α released from infected macrophages, and it repressed the TLR-2 downstream mediators IRAK-1 and TRAF-6, as well as the inflammatory factors cyclooxygenase 2 and interleukin 1ß. In summary, pneumococci recognition induces a negative feedback loop, preventing excessive inflammation via miR-146a and potentially other miRNAs.


Subject(s)
Feedback, Physiological , Macrophage Activation , MicroRNAs/metabolism , Streptococcus pneumoniae/immunology , Cells, Cultured , Gene Expression Profiling , Humans , MicroRNAs/genetics
4.
Nucleic Acids Res ; 42(5): 3044-58, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24369422

ABSTRACT

Lethal(3) malignant brain tumour like 2 (L3MBTL2) is an integral component of the polycomb repressive complex 1.6 (PRC1.6) and has been implicated in transcriptional repression and chromatin compaction. Here, we show that L3MBTL2 is modified by SUMO2/3 at lysine residues 675 and 700 close to the C-terminus. SUMOylation of L3MBTL2 neither affected its repressive activity in reporter gene assays nor it's binding to histone tails in vitro. In order to analyse whether SUMOylation affects binding of L3MBTL2 to chromatin, we performed ChIP-Seq analysis with chromatin of wild-type HEK293 cells and with chromatin of HEK293 cells stably expressing either FLAG-tagged SUMOylation-competent or SUMOylation-defective L3MBTL2. Wild-type FLAG-L3MBTL2 and the SUMOylation-defective FLAG-L3MBTL2 K675/700R mutant essentially occupied the same sites as endogenous L3MBTL2 suggesting that SUMOylation of L3MBTL2 does not affect chromatin binding. However, a subset of L3MBTL2-target genes, particularly those with low L3MBTL2 occupancy including pro-inflammatory genes, was de-repressed in cells expressing the FLAG-L3MBTL2 K675/700R mutant. Finally, we provide evidence that SUMOylation of L3MBTL2 facilitates repression of these PRC1.6-target genes by balancing the local H2Aub1 levels established by the ubiquitinating enzyme RING2 and the de-ubiquitinating PR-DUB complex.


Subject(s)
Gene Expression Regulation , Nuclear Proteins/metabolism , Repressor Proteins/metabolism , Sumoylation , Transcription Factors/metabolism , Transcription, Genetic , Binding Sites , E2F6 Transcription Factor/metabolism , Genome, Human , HEK293 Cells , Histones/metabolism , Humans , Lysine/metabolism , Nuclear Proteins/chemistry , Nuclear Proteins/genetics , Repressor Proteins/chemistry , Repressor Proteins/genetics , Transcription Factors/chemistry , Transcription Factors/genetics , Ubiquitin-Protein Ligases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...