Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 14809, 2022 Aug 31.
Article in English | MEDLINE | ID: mdl-36045141

ABSTRACT

The ferromagnetic resonance of a disordered A2 Fe60Al40 ferromagnetic stripe, of dimensions 5 µm × 1 µm × 32 nm, has been observed in two vastly differing surroundings: in the first case, the ferromagnetic region was surrounded by ordered B2 Fe60Al40, and in the second case it was free standing, adhering only to the oxide substrate. The embedded ferromagnet possesses a periodic magnetic domain structure, which transforms to a single domain structure in the freestanding case. The two cases differ in their dynamic response, for instance, the resonance field for the uniform (k = 0) mode at ~ 14 GHz excitation displays a shift from 209 to 194 mT, respectively for the embedded and freestanding cases, with the external magnetic field applied along the long axis. The resonant behavior of a microscopic ferromagnet can thus be finely tailored via control of its near-interfacial surrounding.

2.
Phys Chem Chem Phys ; 19(22): 14412-14423, 2017 Jun 07.
Article in English | MEDLINE | ID: mdl-28530741

ABSTRACT

Graphene oxide sheets (GO) were covalently functionalized with thionine molecules. The obtained hybrid material, Th-GO, was characterized by means of scanning electron microscopy (SEM), Auger electron spectroscopy (AES), Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy. Subsequently, the interaction of light with the free dye molecules and with dye molecules bound to the graphene oxide sheets was probed via UV-Vis spectroscopy, fluorescence spectroscopy and femtosecond pump-probe spectroscopy. The experimental results proved that thionine was successfully grafted onto the GO sheets, however, only one of the two amino groups of thionine was always involved in the amide bond formation. The Th-GO hybrid suspended in N,N-dimethylformamide (DMF) exhibited suppressed fluorescence as compared to the free dye in the same solvent, pointing to an efficient interaction between the photoexcited dye and the graphene sheets. Yet, no electron transfer products were detected by transient absorption measurements, even though there was a shortening of the singlet excited state lifetime of thionine (from the 567 ps for the free dye to the 313 ps for the dye in Th-GO). These results can be rationalized in terms of a fast back electron transfer process or possibly an energy transfer process.

3.
Nat Commun ; 4: 2051, 2013.
Article in English | MEDLINE | ID: mdl-23797562

ABSTRACT

Ferrimagnetic CoFe2O4 nanopillars embedded in a ferroelectric BaTiO3 matrix are an example for a two-phase magnetoelectrically coupled system. They operate at room temperature and are free of any resource-critical rare-earth element, which makes them interesting for potential applications. Prior studies succeeded in showing strain-mediated coupling between the two subsystems. In particular, the electric properties can be tuned by magnetic fields and the magnetic properties by electric fields. Here we take the analysis of the coupling to a new level utilizing soft X-ray absorption spectroscopy and its associated linear dichroism. We demonstrate that an in-plane magnetic field breaks the tetragonal symmetry of the (1,3)-type CoFe2O4/BaTiO3 structures and discuss it in terms of off-diagonal magnetostrictive-piezoelectric coupling. This coupling creates staggered in-plane components of the electric polarization, which are stable even at magnetic remanence due to hysteretic behaviour of structural changes in the BaTiO3 matrix. The competing mechanisms of clamping and relaxation effects are discussed in detail.

SELECTION OF CITATIONS
SEARCH DETAIL
...