Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Dis ; 102(11): 2220-2223, 2018 11.
Article in English | MEDLINE | ID: mdl-30145950

ABSTRACT

Genetic resistance is a useful strategy to control plant disease, but its effectiveness may be reduced over time due to the emergence of pathogens able to circumvent the defenses of the plant. However, the pyramiding of different resistance factors in the same plant can improve the effectiveness and durability of the resistance. To investigate the potential for this approach in apple to control scab disease we surveyed scab incidence in two experimental orchards located at a distance of more than 300 km planted with apple genotypes carrying quantitative resistance and major gene resistance alone or in combination. Our results showed that the effectiveness of pyramiding in controlling scab was dependent on the site and could not be completely explained by the effectiveness level of the resistances alone.


Subject(s)
Ascomycota/physiology , Disease Resistance/genetics , Malus/genetics , Plant Diseases/prevention & control , Quantitative Trait Loci/genetics , Genotype , Malus/immunology , Malus/microbiology , Plant Diseases/immunology , Plant Diseases/microbiology
2.
Infect Genet Evol ; 27: 481-9, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24530903

ABSTRACT

Theoretical approaches predict that host quantitative resistance selects for pathogens with a high level of pathogenicity, leading to erosion of the resistance. This process of erosion has, however, rarely been experimentally demonstrated. To investigate the erosion of apple quantitative resistance to scab disease, we surveyed scab incidence over time in a network of three orchards planted with susceptible and quantitatively resistant apple genotypes. We sampled Venturiainaequalis isolates from two of these orchards at the beginning of the experiment and we tested their quantitative components of pathogenicity (i.e., global disease severity, lesion density, lesion size, latent period) under controlled conditions. The disease severity produced by the isolates on the quantitatively resistant apple genotypes differed between the sites. Our study showed that quantitative resistance may be subject to erosion and even complete breakdown, depending on the site. We observed this evolution over time for apple genotypes that combine two broad-spectrum scab resistance QTLs, F11 and F17, showing a significant synergic effect of this combination in favour of resistance (i.e., favourable epistatic effect). We showed that isolates sampled in the orchard where the resistance was inefficient presented a similar level of pathogenicity on both apple genotypes with quantitative resistance and susceptible genotypes. As a consequence, our results revealed a case where the use of quantitative resistance may result in the emergence of a generalist pathogen population that has extended its pathogenicity range by performing similarly on susceptible and resistant genotypes. This emphasizes the need to develop quantitative resistances conducive to trade-offs within the pathogen populations concerned.


Subject(s)
Ascomycota , Disease Resistance/genetics , Host-Pathogen Interactions/genetics , Malus/genetics , Malus/microbiology , Plant Diseases/genetics , Plant Diseases/microbiology , Genotype , Incidence
SELECTION OF CITATIONS
SEARCH DETAIL
...