Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Leukoc Biol ; 113(5): 518-524, 2023 05 02.
Article in English | MEDLINE | ID: mdl-36860165

ABSTRACT

Epigenetic therapy is an emerging field in the treatment of human cancer, including hematologic malignancies. This class of therapeutic agents approved by the US Food and Drug Administration for cancer treatment includes DNA hypomethylating agents, histone deacetylase inhibitors, IDH1/2 inhibitors, EZH2 inhibitors, and numerous preclinical targets/agents. Most studies measuring the biological effects of epigenetic therapy focus their attention on either their direct cytotoxic effects on malignant cells or their effects on modifying tumor cell antigen expression, exposing them to immune surveillance mechanisms. However, a growing body of evidence suggests that epigenetic therapy also has effects on the development and function of the immune system, including natural killer cells, which can alter their response to cancer cells. In this review, we summarize the body of literature studying the effects of different classes of epigenetic therapy on the development and/or function of natural killer cells.


Subject(s)
Antineoplastic Agents , Hematologic Neoplasms , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/metabolism , Killer Cells, Natural , Hematologic Neoplasms/genetics , Hematologic Neoplasms/therapy , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Epigenesis, Genetic
2.
Melanoma Res ; 29(5): 491-500, 2019 10.
Article in English | MEDLINE | ID: mdl-31116161

ABSTRACT

Neuroblastoma RAS viral oncogene homolog is a commonly mutated oncogene in melanoma, and therapeutic targeting of neuroblastoma RAS viral oncogene homolog has proven difficult. We characterized the expression and phenotypic functions of five recently discovered splice isoforms of neuroblastoma RAS viral oncogene homolog in melanoma. Canonical neuroblastoma RAS viral oncogene homolog (isoform-1) was expressed to the highest degree and its expression was significantly increased in melanoma metastases compared to primary lesions. Isoform-5 expression in metastases showed a significant, positive correlation with survival and tumours over-expressing isoform-5 had significantly decreased growth in a xenograft model. In contrast, over-expression of any isoform resulted in enhanced proliferation, and invasiveness was increased with over-expression of isoform-1 or isoform-2. Downstream signalling analysis indicated that the isoforms signalled differentially through the mitogen-activated protein kinase and PI3K pathways and A375 cells over-expressing isoform-2 or isoform-5 showed resistance to vemurafenib treatment in vitro. The neuroblastoma RAS viral oncogene homolog isoforms appear to play varying roles in melanoma phenotype and could potentially serve as biomarkers for therapeutic response and disease prognosis.


Subject(s)
Alternative Splicing , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism , Melanoma/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism , Skin Neoplasms/metabolism , Animals , Biomarkers, Tumor , Cell Line, Tumor , Cell Proliferation , Drug Resistance, Neoplasm , Female , Gene Expression Regulation, Neoplastic , Humans , Melanoma/therapy , Mice , Mice, Nude , Mutation , Neoplasm Metastasis , Neoplasm Transplantation , Phosphatidylinositol 3-Kinases/metabolism , Prognosis , Protein Isoforms , RNA, Messenger/metabolism , Signal Transduction/genetics , Skin Neoplasms/therapy , Vemurafenib/therapeutic use
4.
Sci Rep ; 7(1): 15424, 2017 11 13.
Article in English | MEDLINE | ID: mdl-29133913

ABSTRACT

Myeloid derived suppressor cells (MDSC) produce nitric oxide (NO) and inhibit dendritic cell (DC) immune responses in cancer. DCs present cancer cell antigens to CD4+ T cells through Jak-STAT signal transduction. In this study, NO donors (SNAP and DETA-NONOate) inhibited DC antigen presentation. As expected, MDSC isolated from peripheral blood mononuclear cells (PBMC) from cancer patients produced high NO levels. We hypothesized that NO producing MDSC in tumor-bearing hosts would inhibit DC antigen presentation. Antigen presentation from DCs to CD4+ T cells (T cell receptor transgenic OT-II) was measured via a [3H]-thymidine incorporation proliferation assay. MDSC from melanoma tumor models decreased the levels of proliferation more than pancreatic cancer derived MDSC. T cell proliferation was restored when MDSC were treated with inhibitors of inducible nitric oxide synthase (L-NAME and NCX-4016). A NO donor inhibited OT II T cell receptor recognition of OT II specific tetramers, thus serving as a direct measure of NO inhibition of antigen presentation. Our group has previously demonstrated that STAT1 nitration also mediates MDSC inhibitory effects on immune cells. Therefore, a novel liquid chromatography-tandem mass spectrometry assay demonstrated that nitration of the STAT1-Tyr701 occurs in PBMC derived from both pancreatic cancer and melanoma patients.


Subject(s)
Melanoma, Experimental/immunology , Myeloid-Derived Suppressor Cells/metabolism , Nitric Oxide/metabolism , Pancreatic Neoplasms/immunology , STAT1 Transcription Factor/metabolism , Animals , Antigen Presentation/immunology , Antigens, Neoplasm/immunology , CD4-Positive T-Lymphocytes/immunology , Dendritic Cells/immunology , Humans , Melanoma, Experimental/pathology , Mice , Mice, Transgenic , Myeloid-Derived Suppressor Cells/immunology , Nitric Oxide/immunology , Nitric Oxide Donors/metabolism , Pancreatic Neoplasms/blood , STAT1 Transcription Factor/analysis , Tandem Mass Spectrometry
5.
Proc Natl Acad Sci U S A ; 114(36): 9629-9634, 2017 09 05.
Article in English | MEDLINE | ID: mdl-28827320

ABSTRACT

Activating mutations in BRAF are found in 50% of melanomas and although treatment with BRAF inhibitors (BRAFi) is effective, resistance often develops. We now show that recently discovered NRAS isoform 2 is up-regulated in the setting of BRAF inhibitor resistance in melanoma, in both cell lines and patient tumor tissues. When isoform 2 was overexpressed in BRAF mutant melanoma cell lines, melanoma cell proliferation and in vivo tumor growth were significantly increased in the presence of BRAFi treatment. shRNA-mediated knockdown of isoform 2 in BRAFi resistant cells restored sensitivity to BRAFi compared with controls. Signaling analysis indicated decreased mitogen-activated protein kinase (MAPK) pathway signaling and increased phosphoinositol-3-kinase (PI3K) pathway signaling in isoform 2 overexpressing cells compared with isoform 1 overexpressing cells. Immunoprecipitation of isoform 2 validated a binding affinity of this isoform to both PI3K and BRAF/RAF1. The addition of an AKT inhibitor to BRAFi treatment resulted in a partial restoration of BRAFi sensitivity in cells expressing high levels of isoform 2. NRAS isoform 2 may contribute to resistance to BRAFi by facilitating PI3K pathway activation.


Subject(s)
GTP Phosphohydrolases/genetics , Melanoma/drug therapy , Melanoma/genetics , Membrane Proteins/genetics , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Skin Neoplasms/drug therapy , Skin Neoplasms/genetics , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Cell Movement , Drug Resistance, Neoplasm/genetics , GTP Phosphohydrolases/antagonists & inhibitors , GTP Phosphohydrolases/metabolism , Gene Knockdown Techniques , Humans , Indoles/therapeutic use , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/genetics , Melanoma/metabolism , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/metabolism , Mutation , Phosphatidylinositol 3-Kinases/metabolism , Protein Isoforms/genetics , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Neoplasm/genetics , RNA, Neoplasm/metabolism , Skin Neoplasms/metabolism , Sulfonamides/therapeutic use , Up-Regulation , Vemurafenib
6.
Protein Sci ; 25(5): 1069-74, 2016 May.
Article in English | MEDLINE | ID: mdl-26947772

ABSTRACT

It was recently discovered that the NRAS isoform 5 (20 amino acids) is expressed in melanoma and results in a more aggressive cell phenotype. This novel isoform is responsible for increased phosphorylation of downstream targets such as AKT, MEK, and ERK as well as increased cellular proliferation. This structure report describes the NMR solution structure of NRAS isoform 5 to be used as a starting point to understand its biophysical interactions. The isoform is highly flexible in aqueous solution, but forms a helix-turn-coil structure in the presence of trifluoroethanol as determined by NMR and CD spectroscopy.


Subject(s)
GTP Phosphohydrolases/chemistry , GTP Phosphohydrolases/genetics , Membrane Proteins/chemistry , Membrane Proteins/genetics , Trifluoroethanol/chemistry , Circular Dichroism , Humans , Melanoma/genetics , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Phosphorylation , Protein Conformation, alpha-Helical , Protein Isoforms/chemistry , Protein Isoforms/genetics , Skin Neoplasms/genetics
7.
BMC Med Genomics ; 8: 66, 2015 Oct 15.
Article in English | MEDLINE | ID: mdl-26470881

ABSTRACT

BACKGROUND: Traditionally, the CD56(dim)CD16(+) subset of Natural Killer (NK) cells has been thought to mediate cellular cytotoxicity with modest cytokine secretion capacity. However, studies have suggested that this subset may exert a more diverse array of immunological functions. There exists a lack of well-developed functional models to describe the behavior of activated NK cells, and the interactions between signaling pathways that facilitate effector functions are not well understood. In the present study, a combination of genome-wide microarray analyses and systems-level bioinformatics approaches were utilized to elucidate the transcriptional landscape of NK cells activated via interactions with antibody-coated targets in the presence of interleukin-12 (IL-12). METHODS: We conducted differential gene expression analysis of CD56(dim)CD16(+) NK cells following FcR stimulation in the presence or absence of IL-12. Next, we functionally characterized gene sets according to patterns of gene expression and validated representative genes using RT-PCR. IPA was utilized for biological pathway analysis, and an enriched network of interacting genes was generated using GeneMANIA. Furthermore, PAJEK and the HITS algorithm were employed to identify important genes in the network according to betweeness centrality, hub, and authority node metrics. RESULTS: Analyses revealed that CD56(dim)CD16(+) NK cells co-stimulated via the Fc receptor (FcR) and IL-12R led to the expression of a unique set of genes, including genes encoding cytotoxicity receptors, apoptotic proteins, intracellular signaling molecules, and cytokines that may mediate enhanced cytotoxicity and interactions with other immune cells within inflammatory tissues. Network analyses identified a novel set of connected key players, BATF, IRF4, TBX21, and IFNG, within an integrated network composed of differentially expressed genes in NK cells stimulated by various conditions (immobilized IgG, IL-12, or the combination of IgG and IL-12). CONCLUSIONS: These results are the first to address the global mechanisms by which NK cells mediate their biological functions when encountering antibody-coated targets within inflammatory sites. Moreover, this study has identified a set of high-priority targets for subsequent investigation into strategies to combat cancer by enhancing the anti-tumor activity of CD56(dim)CD16(+) NK cells.


Subject(s)
Interleukin-12/pharmacology , Killer Cells, Natural/drug effects , Killer Cells, Natural/metabolism , Receptors, Fc/metabolism , Transcriptome/drug effects , Gene Regulatory Networks/drug effects , Genomics , Humans , Immunoglobulin G/immunology , Killer Cells, Natural/cytology , Killer Cells, Natural/immunology , Oligonucleotide Array Sequence Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...