Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Mar Drugs ; 22(3)2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38535453

ABSTRACT

Brown seaweeds are attracting attention due to their richness in bioactive compounds, in particular, their phlorotannins. We present here a case study of two Fucales, Ascophyllum nodosum and Halidrys siliquosa, sustainably collected, to produce active polyphenols for the cosmetics sector. Phenolic contents of crude extracts, obtained by Accelerated Solvent Extraction (ASE), were more elevated in H. siliquosa at 100.05 mg/g dry weight (DW) than in A. nodosum (29.51 mg/g DW), considering 3 cycles with cell inversion. The temperature of extraction for a high phenolic content and high associated antioxidant activities close to positive controls was 150 °C for both algae and the use of only one cycle was enough. A semi-purification process using Solid-phase Extraction (SPE) was carried out on both ASE crude extracts (one per species). The majority of phlorotannins were found in the ethanolic SPE fraction for A. nodosum and the hydroethanolic one for H. siliquosa. The SPE process allowed us to obtain more concentrated fractions of active phenolic compounds (×1.8 and 2 in A. nodosum and H. siliquosa, respectively). Results are discussed in regard to the exploitation of seaweeds in Brittany and to the research of sustainable processes to produce active natural ingredients for cosmetics.


Subject(s)
Cosmetics , Seaweed , Antioxidants , Ethanol , Phenols , Complex Mixtures
2.
Mar Drugs ; 22(3)2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38535462

ABSTRACT

The effect of UV radiation on the accumulation of mycosporine-like amino acids (MAAs) and pigments was investigated on red macroalga Palmaria palmata cultivated for 21 days. The data were combined with the effect of NaNO3 to further investigate the synthesis of these nitrogenous compounds. A progressive decrease in both total MAA and pigment contents was observed, with a positive effect of nitrate supply. Usujirene was the only MAA exhibiting a significantly increasing content when exposed to UV radiation, changing from 9% to 24% of the total MAA's contribution, with no variation observed with NaNO3. This suggests a specific induction or synthesis pathway of usujirene for photoprotection, while the synthesis of other MAAs could have been limited by an insufficient amount of UV radiation and/or irradiance. The photoprotective ability of some MAAs could have been impacted by nitrogen starvation over time, resulting in a limited synthesis and/or potential use of MAAs as a nitrogen source for red macroalgae. The data confirmed the multiple effects of environmental factors on the synthesis of MAAs while providing new insights into the specific synthesis of usujirene, which could find an application in the cosmetics sector as natural sunscreen or an anti-ageing agent.


Subject(s)
Edible Seaweeds , Rhodophyta , Seaweed , Amino Acids , Nitrogen
3.
ISME J ; 18(1)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38365246

ABSTRACT

Since 2011, the Caribbean coasts have been subject to episodic influxes of floating Sargassum seaweed of unprecedented magnitude originating from a new area "the Great Atlantic Sargassum Belt" (GASB), leading in episodic influxes and mass strandings of floating Sargassum. For the biofilm of both holopelagic and benthic Sargassum as well as in the surrounding waters, we characterized the main functional groups involved in the microbial nitrogen cycle. The abundance of genes representing nitrogen fixation (nifH), nitrification (amoA), and denitrification (nosZ) showed the predominance of diazotrophs, particularly within the GASB and the Sargasso Sea. In both location, the biofilm associated with holopelagic Sargassum harboured a more abundant proportion of diazotrophs than the surrounding water. The mean δ15N value of the GASB seaweed was very negative (-2.04‰), and lower than previously reported, reinforcing the hypothesis that the source of nitrogen comes from the nitrogen-fixing activity of diazotrophs within this new area of proliferation. Analysis of the diversity of diazotrophic communities revealed for the first time the predominance of heterotrophic diazotrophic bacteria belonging to the phylum Proteobacteria in holopelagic Sargassum biofilms. The nifH sequences belonging to Vibrio genus (Gammaproteobacteria) and Filomicrobium sp. (Alphaproteobacteria) were the most abundant and reached, respectively, up to 46.0% and 33.2% of the community. We highlighted the atmospheric origin of the nitrogen used during the growth of holopelagic Sargassum within the GASB and a contribution of heterotrophic nitrogen-fixing bacteria to a part of the Sargassum proliferation.


Subject(s)
Sargassum , Bacteria/genetics , Nitrogen Fixation/genetics , Nitrogen , Cell Proliferation
4.
Chemosphere ; 308(Pt 1): 136186, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36041518

ABSTRACT

We document for the first time, the spatial distribution at basin scale (North tropical Atlantic Ocean) of As, P and trace metal (TM) concentrations in the three morphotypes belonging to the two holopelagic species Sargassum natans and S. fluitans and three morphotypes: S. natans VIII, S. natans I and S. fluitans III. These samples collected in the North equatorial current (NEC) and in the subtropical Sargasso Sea (sSS) (∼25°N, 60°W) were also compared to coastal samples collected downwind Guadeloupe Island and on the strand of Martinique (mangrove and beach). Along the studied zonal oceanic transect, the highest values of As (range 120-240 µg g-1, dry weight, dw) were found in the sSS area where primary production is highly limited by phosphorus. At these stations, the P content of Sargassum spp. was minimal (range 500-1000 µg g-1, dw) as well as the content in Cd and Zn known for their nutrient-like oceanic behaviors and distributions very similar to P. This illustrates for the first time in the natural environment, the higher bioaccumulation of arsenic in Sargassum spp. in P-limiting conditions which is due to the competition in the phosphate transporter between arsenate and phosphate. As compared to samples collected at sea, the Sargassum spp. collected in the strand of Martinique had (1) lower As concentrations (typical range 30-45 µg g-1, dw) and (2) much higher Al, Fe, Mn, Cr and Co concentrations, showing a certain ability of Sargassum spp. to be depurated of its As content in the coastal zone following competitive exchange with terrigenous metals.


Subject(s)
Arsenic , Sargassum , Trace Elements , Arsenates , Arsenic/analysis , Atlantic Ocean , Cadmium , Phosphate Transport Proteins , Phosphates , Phosphorus
5.
Mar Biotechnol (NY) ; 24(4): 801-819, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35915285

ABSTRACT

Marine animal by-products of the food industry are a great source of valuable biomolecules. Skins and bones are rich in collagen, a protein with various applications in food, cosmetic, healthcare, and medical industries in its native form or partially hydrolyzed (gelatin). Salmon gelatin is a candidate of interest due to its high biomass production available through salmon consumption, its biodegradability, and its high biocompatibility. However, its low mechanical and thermal properties can be an obstacle for various applications requiring cohesive material. Thus, gelatin modification by cross-linking is necessary. Enzymatic cross-linking by microbial transglutaminase (MTG) is preferred to chemical cross-linking to avoid the formation of potentially cytotoxic residues. In this work, the potential of salmon skin gelatin was investigated, in a comparative study with porcine gelatin, and an enzymatic versus chemical cross-linking analysis. For this purpose, the two cross-linking methods were applied to produce three-dimensional, porous, and mechanically reinforced hydrogels and sponges with different MTG ratios (2%, 5%, and 10% w/w gelatin). Their biochemical, rheological, and structural properties were characterized, as well as the stability of the material, including the degree of syneresis and the water-binding capacity. The results showed that gelatin enzymatically cross-linked produced material with high cross-linking densities over 70% of free amines. The MTG addition seemed to play a crucial role, as shown by the increase in mechanical and thermal resistances with the production of a cohesive material stable above 40 °C for at least 7 days and comparable to porcine and chemically cross-linked gelatins. Two prototypes were obtained with similar thermal resistances but different microstructures and viscoelastic properties, due to different formation dynamics of the covalent network. Considering these results, the enzymatically cross-linked salmon gelatin is a relevant candidate as a biopolymer for the production of matrix for a wide range of biotechnological applications such as food packaging, cosmetic patch, wound healing dressing, or tissue substitute.


Subject(s)
Biomimetic Materials , Salmo salar , Animals , Cross-Linking Reagents/chemistry , Food Packaging , Gelatin/chemistry , Salmo salar/metabolism , Swine , Transglutaminases
6.
Sci Total Environ ; 811: 152262, 2022 Mar 10.
Article in English | MEDLINE | ID: mdl-34896500

ABSTRACT

Maritime transportation is a major contributor to the world economy, but has significant social and environmental impacts. Each impact calls for different technical or operational solutions. Amongst these solutions, we found that speed reduction measures appear to mitigate several issues: (1) collision with wildlife; (2) collision with non-living objects; (3) underwater noise; (4) invasive species; and (5) gas emission. We do not pretend that speed reduction is the best solution for each individual issue mentioned in this paper, but we argue that it could be a key solution to significantly reduce these threats all together. Further interdisciplinary research is required to balance private economic costs of speed reduction measures with environmental and social benefits emerging from all mitigated issues.


Subject(s)
Ships , Transportation , Animals , Animals, Wild , Environment , Noise
7.
Mar Drugs ; 19(9)2021 Sep 04.
Article in English | MEDLINE | ID: mdl-34564166

ABSTRACT

Five native Sargassaceae species from Brittany (France) living in rockpools were surveyed over time to investigate photoprotective strategies according to their tidal position. We gave evidences for the existence of a species distribution between pools along the shore, with the most dense and smallest individuals in the highest pools. Pigment contents were higher in lower pools, suggesting a photo-adaptive process by which the decreasing light irradiance toward the low shore was compensated by a high production of pigments to ensure efficient photosynthesis. Conversely, no xanthophyll cycle-related photoprotective mechanism was highlighted because high levels of zeaxanthin rarely occurred in the upper shore. Phlorotannins were not involved in photoprotection either; only some lower-shore species exhibited a seasonal trend in phlorotannin levels. The structural complexity of phlorotannins appears more to be a taxonomic than an ecological feature: Ericaria produced simple phloroglucinol while Cystoseira and Gongolaria species exhibited polymers. Consequently, tide pools could be considered as light-protected areas on the intertidal zone, in comparison with the exposed emerged substrata where photoprotective mechanisms are essential.


Subject(s)
Ecosystem , Phaeophyceae/chemistry , Pigments, Biological/chemistry , Tannins/chemistry , Animals , Aquatic Organisms , France , Ultraviolet Rays
8.
Front Nutr ; 8: 719438, 2021.
Article in English | MEDLINE | ID: mdl-34485367

ABSTRACT

Osteoporosis is an aging-related disease and a worldwide health issue. Current therapeutics have failed to reduce the prevalence of osteoporosis in the human population, thus the discovery of compounds with bone anabolic properties that could be the basis of next generation drugs is a priority. Marine plants contain a wide range of bioactive compounds and the presence of osteoactive phytochemicals was investigated in two halophytes collected in Brittany (France): the invasive Spartina alterniflora and the native Salicornia fragilis. Two semi-purified fractions, prepared through liquid-liquid extraction, were assessed for phenolic and flavonoid contents, and for the presence of antioxidant, mineralogenic and osteogenic bioactivities. Ethyl acetate fraction (EAF) was rich in phenolic compounds and exhibited the highest antioxidant activity. While S. fragilis EAF only triggered a weak proliferative effect in vitro, S. alterniflora EAF potently induced extracellular matrix mineralization (7-fold at 250 µg/mL). A strong osteogenic effect was also observed in vivo using zebrafish operculum assay (2.5-fold at 10 µg/mL in 9-dpf larvae). Results indicate that polyphenol rich EAF of S. alterniflora has both antioxidant and bone anabolic activities. As an invasive species, this marine plant may represent a sustainable source of molecules for therapeutic applications in bone disorders.

10.
J Phycol ; 57(2): 689-693, 2021 04.
Article in English | MEDLINE | ID: mdl-33295639

ABSTRACT

Dimethylsulfoniopropionate (DMSP) plays many important physiological and ecological roles in macroalgae. The most common method to measure DMSP is by gas chromatography analysis of the dimethylsulfide (DMS) produced after NaOH hydrolysis (pH > 12). Storage of DMS, however, is not recommended for more than a week. We investigated if acidification can be a suitable method to preserve DMSP in macroalgal samples over three months of storage, compared to widely used protocols such as drying and freezing at -20°C. The DMSP content of green (Ulva sp. and Ulva compressa), red (Chondrus crispus), and brown (Bifurcaria bifurcata) macroalgae were analyzed: 24 h after NaOH addition (control values); and after acidification (0.2 mol · L HCl-1 ) for 24 h of fresh material, followed by NaOH addition for 24 h. These values were compared to measurements after 3-month storage of samples that had been either dried in a heater (60°C for a night, and storage at room temperature), or frozen at -20°C, or kept in 0.2 mol · L HCl-1 . There was no significant difference between DMSP measurements on freshly collected material and after acidification of the samples, whether 24 h later or after 3 months of storage. This was in contrast to 3-month storage protocols involving overnight drying at 60°C (75-98% DMSP loss), and to a lesser degree freezing at -20°C (37-80% DMSP loss). We thus advise to acidify macroalgal samples for preservation over long periods of time rather than drying or freezing, when assaying DMSP content.


Subject(s)
Seaweed , Sulfonium Compounds , Ulva , Hydrogen-Ion Concentration
11.
PLoS One ; 14(9): e0222584, 2019.
Article in English | MEDLINE | ID: mdl-31527915

ABSTRACT

The present study reports on observations carried out in the Tropical North Atlantic in summer and autumn 2017, documenting Sargassum aggregations using both ship-deck observations and satellite sensor observations at three resolutions (MSI-10 m, OLCI-300 m, VIIRS-750 m and MODIS-1 km). Both datasets reported that in summer, Sargassum aggregations were mainly observed off Brazil and near the Caribbean Islands, while they accumulated near the African coast in autumn. Based on in situ observations, we propose a five-class typology allowing standardisation of the description of in situ Sargassum raft shapes and sizes. The most commonly observed Sargassum raft type was windrows, but large rafts composed of a quasi-circular patch hundreds of meters wide were also observed. Satellite imagery showed that these rafts formed larger Sargassum aggregations over a wide range of scales, with smaller aggregations (of tens of m2 area) nested within larger ones (of hundreds of km2). Match-ups between different satellite sensors and in situ observations were limited for this dataset, mainly because of high cloud cover during the periods of observation. Nevertheless, comparisons between the two datasets showed that satellite sensors successfully detected Sargassum abundance and aggregation patterns consistent with in situ observations. MODIS and VIIRS sensors were better suited to describing the Sargassum aggregation distribution and dynamics at Atlantic scale, while the new sensors, OLCI and MSI, proved their ability to detect Sargassum aggregations and to describe their (sub-) mesoscale nested structure. The high variability in raft shape, size, thickness, depth and biomass density observed in situ means that caution is called for when using satellite maps of Sargassum distribution and biomass estimation. Improvements would require additional in situ and airborne observations or very high-resolution satellite imagery.


Subject(s)
Sargassum/growth & development , Atlantic Ocean , Biomass , Brazil , Satellite Imagery/methods , Seasons , West Indies
12.
Mar Environ Res ; 147: 37-48, 2019 May.
Article in English | MEDLINE | ID: mdl-31014905

ABSTRACT

To cope with the biotic and abiotic stresses experienced within their environment, marine macroalgae have developed certain defence mechanisms including the synthesis of photo-protective molecules against light and particularly harmful UV radiation. The aim of this study was to screen selected red algae, a highly diverse phylogenetic group, for the production of photo-protective molecules. The pigment content and composition (i.e. chlorophyll-a, phycobiliproteins and carotenoids) and the composition of mycosporine-like amino acids (MAAs) were studied in 40 species of red macroalgae collected in Brittany (France), at two distinct periods (i.e. February and July 2017). A high inter-specific variability was demonstrated in terms of pigment content and MAA composition. Twenty-three potential MAAs were detected by HPLC, and six were identified by LC-MS (i.e. shinorine, palythine, asterina-330, porphyra-334, usurijene and palythene). This is the first study to report on the composition of pigments and MAAs in a diverse group of red seaweeds from Brittany, including some species for which the MAA composition has never been studied before. Nevertheless, the results suggested that some species of red algae are more likely to cope with high levels of light radiation since those species such as Bostrychia scorpioides, Porphyra dioica, Gracilaria vermiculophylla and Vertebrata lanosa are living in environments exposed to higher levels of irradiation, and had various MAAs in addition to their photo-protective pigments.


Subject(s)
Adaptation, Physiological , Rhodophyta , Seaweed , Amino Acids , France , Phylogeny , Rhodophyta/chemistry , Ultraviolet Rays
13.
Mar Pollut Bull ; 131(Pt B): 40-48, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29422305

ABSTRACT

The potential of Indonesian bays as alginate producers was assessed by determining the stock of wild brown algae and exploring their biomass as alginophytes at the scale of entire bay, using a combination of field observations, remote sensing high resolution data and GIS tools. Ekas Bay in Lombok Island presented a stock of brown macroalgae which varied with season and species: for Padina the biomass reached 97.85±12.63 and 79.54±2.53tons in May/June and November respectively; for Sargassaceae species, it reached 669.70±109.64 and 147.70±77.97tons in May/June and November respectively. The best alginate yields occurred during the May/June period: Padina could produce 9.10±0.06tons DW of alginates. Interestingly, Sargassum/Turbinaria together allow 207.61±0.42tons DW of alginates. This study suggests that wild Sargassaceae represent an interesting stock in terms of biomass, alginate yield and M/G ratio.


Subject(s)
Biomass , Phaeophyceae/metabolism , Remote Sensing Technology , Sargassum/metabolism , Seaweed/metabolism , Alginates , Glucuronic Acid/biosynthesis , Hexuronic Acids , Indonesia , Seasons
14.
Food Chem ; 192: 67-74, 2016 Feb 01.
Article in English | MEDLINE | ID: mdl-26304321

ABSTRACT

Pressurized liquids, PLE, and enzyme-assisted extraction, EAE, have been tested to improve the extraction of phlorotannins from the seaweed Sargassum muticum. Enzymatic treatment with proteases and carbohydrases, alkaline hydrolysis and PLE with ethanol:water as extracting solvent have been studied in terms of extraction yield, total phenolic content and antioxidant activity (TEAC assay). Results demonstrated that the application of PLE alone provided the highest yields and relevant antioxidant activity. An experimental design was employed to further optimize the PLE extraction conditions; optimum parameters included the use of 160 °C and 95% ethanol. Under these conditions, values of 21.9%, 94.0mg gallic acid equivalents g(-1), 5.018 mg phloroglucinol equivalents g(-1) and 1.275 mmol trolox equivalents g(-1) were obtained for extraction yield, total phenols, total phlorotannins and TEAC, respectively. A preliminary chemical characterization by liquid chromatography coupled to mass spectrometry provided insight in terms of the mechanisms involved in the different processes.


Subject(s)
Chromatography, Liquid/methods , Cyanobacteria/chemistry , Mass Spectrometry/methods , Phenols/chemistry , Sargassum/chemistry , Antioxidants
15.
J Chromatogr A ; 1428: 115-25, 2016 Jan 08.
Article in English | MEDLINE | ID: mdl-26210109

ABSTRACT

In the present work, the phlorotannin composition of different Sargassum muticum samples collected at different locations along the North Atlantic coasts as well as the bioactivities related to these components were investigated. After pressurized liquid extraction, the samples collected at the extreme locations of a latitudinal gradient from Portugal and Norway, were found to be the richest on total phenols and, particularly, on phlorotannins, containing up to 148.97 and 5.12mg phloroglucinol equivalents g(-1), respectively. The extracts obtained from these locations were further purified and chemically characterized using a modified HILIC×RP-DAD-MS/MS method. The application of this methodology allowed the tentative identification of a great variability of phlorotannins with different degrees of polymerization (from 3 to 11) and structures, determined for the first time in S. muticum. The most-abundant phlorotannins on these samples were fuhalols, hydroxyfuhalols and phlorethols, showing also particularities and important differences depending on the geographical location. Afterwards, the antiproliferative activity of these extracts against HT-29 adenocarcinoma colon cancer cells was studied. Results revealed that the richest S. muticum samples in terms of total phlorotannins, i.e., those from Norway, presented the highest activity, showing a good cytotoxic potential at concentrations in the medium micromolar range.


Subject(s)
Chromatography, Liquid , Sargassum/chemistry , Tandem Mass Spectrometry , Tannins/chemistry , Tannins/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Antineoplastic Agents/pharmacology , Atlantic Ocean , Cell Proliferation/drug effects , HT29 Cells , Humans , Phenols/chemistry , Phenols/pharmacology , Phloroglucinol/chemistry , Phloroglucinol/pharmacology
16.
Methods Mol Biol ; 1308: 131-43, 2015.
Article in English | MEDLINE | ID: mdl-26108502

ABSTRACT

The interest in the physiological roles and bioactivities of plant phenols has increased over the past decades. In seaweeds, many investigations have dealt with phenolic compounds of Phaeophyceae (phlorotannins), even though little is known so far about the ecophysiological variations of their pool or their biosynthetic pathways. We describe here a simple procedure based on the use of water-organic solvent mixtures for the extraction of phlorotannins. Crude extracts are semi-purified and fractionated by separating methods based on both the polarity and the molecular size of compounds. Phenols are then quantified by the Folin-Ciocalteu method and their radical-scavenging activity is characterized using the DPPH test. All along the purification process of phenolic compounds, the efficiency of separation is assessed by (1)H-NMR.


Subject(s)
Free Radical Scavengers/isolation & purification , Phaeophyceae/chemistry , Phenols/isolation & purification , Tannins/isolation & purification , Free Radical Scavengers/chemistry , Free Radical Scavengers/pharmacology , Liquid-Liquid Extraction/methods , Phenols/chemistry , Phenols/pharmacology , Proton Magnetic Resonance Spectroscopy/methods , Seaweed/chemistry , Solvents/chemistry , Tannins/chemistry , Tannins/pharmacology , Water/chemistry
17.
Talanta ; 135: 1-6, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25640118

ABSTRACT

Among the most renowned natural products from brown algae, phlorotannins are phloroglucinol polymers that have been extensively studied, both for their biotechnological potential and their interest in chemical ecology. The accurate quantification of these compounds is a key point to understand their role as mediators of chemical defense. In recent years, the Folin-Ciocalteu assay has remained a classic protocol for phlorotannin quantification, even though it frequently leads to over-estimations. Furthermore, the quantification of the whole pool of phlorotannins may not be relevant in ecological surveys. In this study, we propose a rapid (1)H qNMR method for the quantification of phlorotannins. We identified phloroglucinol as the main phenolic compound produced by the brown macroalga Cystoseira tamariscifolia. This monomer was detected in vivo using (1)H HR-MAS spectroscopy. We quantified this molecule through (1)H qNMR experiments using TSP as internal standard. The results are discussed by comparison with a standard Folin-Ciocalteu assay performed on purified extracts. The accuracy and simplicity of qNMR makes this method a good candidate as a standard phlorotannin assay.


Subject(s)
Phloroglucinol/analysis , France , Magnetic Resonance Spectroscopy , Phaeophyceae/metabolism , Phloroglucinol/metabolism , Tannins/analysis
18.
J Photochem Photobiol B ; 143: 52-60, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25600264

ABSTRACT

In temperate saltmarshes, halophytic plants have to daily protect their internal tissues against sunlight and UV rays. Consequently, they develop adaptive responses such as the synthesis of secondary metabolites, including polyphenols. The present study focused on the biological activities of fractions enriched in polyphenols from Salicornia ramosissima. Three different extracts were obtained by purification processes to concentrate polyphenols: a crude hydroalcoholic extract, and two purified fractions: an ethyl acetate fraction (EAF) and an aqueous fraction. Phenolic and flavonoid contents, antioxidant (DPPH radical-scavenging activity, reducing activity, ß-carotene linoleic acid system and the ORAC method) and sunscreen properties (Sun Protection Factor and UVA-Protection Factor) were assessed by in vitro tests. The purification process was effective in increasing phenolic and flavonoid contents as well as antioxidant and sunscreen capacities of the EAF. The EAF appeared to be a broad spectrum UV absorber. The chemical structure of 10 EAF polyphenols was elucidated using 2D NMR and mass spectrometry spectra. Furthermore, a correlation was observed between phenolic composition and biological activity. These findings are encouraging for the future use of S. ramosissima as a potential source of antioxidant and photoprotectant molecules for industrial applications.


Subject(s)
Antioxidants/chemistry , Antioxidants/pharmacology , Chenopodiaceae/chemistry , Polyphenols/chemistry , Polyphenols/pharmacology , Radiation-Protective Agents/chemistry , Radiation-Protective Agents/pharmacology , Acetates/chemistry , Antioxidants/isolation & purification , Polyphenols/isolation & purification , Radiation-Protective Agents/isolation & purification
19.
Talanta ; 132: 451-6, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25476330

ABSTRACT

Two recent techniques based on chemical footprinting analysis, HRMAS NMR and FTIR spectroscopy, were tested on a brown macroalgal model. These powerful and easily-to-use techniques allowed us to discriminate Sargassum muticum specimens collected in five different countries along Atlantic coasts, from Portugal to Norway. HRMAS NMR and FTIR permitted the obtaining of an overview of metabolites produced by the alga. Based on spectra analysis, results allowed us to successfully group the samples according to their geographical origin. HRMAS NMR and FTIR spectroscopy respectively point out the relation between the geographical localization and the chemical composition and demonstrated macromolecules variations regarding to environmental stress. Then, our results are discussed in regard of the powerful of these techniques together with the variability of the main molecules produced by Sargassum muticum along the Atlantic coasts.


Subject(s)
Metabolome , Phylogeny , Sargassum/chemistry , Sargassum/classification , Atlantic Ocean , Europe , Magnetic Resonance Spectroscopy , Population Dynamics , Principal Component Analysis , Sargassum/metabolism , Spectroscopy, Fourier Transform Infrared
20.
J Phycol ; 50(6): 1048-57, 2014 Dec.
Article in English | MEDLINE | ID: mdl-26988786

ABSTRACT

Several species of the genus Turbinaria coexist along the coasts of islands in the Indian and Pacific Oceans. Among these brown algae, Turbinaria ornata and T. conoides are sister species that are difficult to differentiate using exclusively morphological characters. Based on in vivo nuclear magnetic resonance and chromatographic techniques, i.e., liquid and gas chromatography-mass spectrometry analysis, combined with phylogenetic data, we successfully identified turbinaric acid in T. conoides samples from several Indian and Pacific Ocean islands. This nonvariable discriminant molecule was only identified in T. conoides specimens, but not in the two allied species T. ornata and T. decurrens. Results are discussed with regard to turbinaric acid as an interesting chemomarker isolated from T. conoides and the rapid discrimination of Turbinaria specimens using chemical assays.

SELECTION OF CITATIONS
SEARCH DETAIL
...