Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 146(10): 6784-6795, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38430128

ABSTRACT

One-dimensional (1D) systems persist as some of the most interesting because of the rich physics that emerges from constrained degrees of freedom. A desirable route to harness the properties therein is to grow bulk single crystals of a physically three-dimensional (3D) but electronically 1D compound. Most bulk compounds which approach the electronic 1D limit still field interactions across the other two crystallographic directions and, consequently, deviate from the 1D models. In this paper, we lay out chemical concepts to realize the physics of 1D models in 3D crystals. These are based on both structural and electronic arguments. We present BiIr4Se8, a bulk crystal consisting of linear Bi2+ chains within a scaffolding of IrSe6 octahedra, as a prime example. Through crystal structure analysis, density functional theory calculations, X-ray diffraction, and physical property measurements, we demonstrate the unique 1D electronic configuration in BiIr4Se8. This configuration at ambient temperature is a gapped Su-Schriefer-Heeger system, generated by way of a canonical Peierls distortion involving Bi dimerization that relieves instabilities in a 1D metallic state. At 190 K, an additional 1D charge density wave distortion emerges, which affects the Peierls distortion. The experimental evidence validates our design principles and distinguishes BiIr4Se8 among other quasi-1D bulk compounds. We thus show that it is possible to realize unique electronically 1D materials applying chemical concepts.

2.
Nanomaterials (Basel) ; 13(15)2023 Jul 29.
Article in English | MEDLINE | ID: mdl-37570528

ABSTRACT

All-solid-state batteries (ASSBs) that employ solid-state electrolytes (SSEs) have the potential to replace more conventional batteries that employ liquid electrolytes due to their inherent safety, compatibility with lithium metal and reputable ionic conductivity. Li7P3S11 is a promising SSE with reported ionic conductivities in the order of 10 mS/cm. However, its susceptibility to degradation through oxidation and hydrolysis limits its commercial viability. In this work, we demonstrate a laser-based processing method for SSEs to improve humidity stability. It was determined that laser power and scanning speed greatly affect surface morphology, as well as the resulting chemical composition of Li7P3S11 samples. Electrochemical impedance spectroscopy revealed that laser treatment can produce SSEs with higher ionic conductivities than pristine counterparts after air exposure. Further examination of chemical composition revealed an optimal laser processing condition that reduces the rate of P2S74- degradation. This work demonstrates the ability of laser-based processing to be used to improve the stability of SSEs.

3.
Sci Adv ; 9(12): eadd6167, 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36947621

ABSTRACT

Liquid-phase chemical exfoliation can achieve industry-scale production of two-dimensional (2D) materials for a wide range of applications. However, many 2D materials with potential applications in quantum technologies often fail to leave the laboratory setting because of their air sensitivity and depreciation of physical performance after chemical processing. We report a simple chemical exfoliation method to create a stable, aqueous, surfactant-free, superconducting ink containing phase-pure 1T'-WS2 monolayers that are isostructural to the air-sensitive topological insulator 1T'-WTe2. The printed film is metallic at room temperature and superconducting below 7.3 kelvin, shows strong anisotropic unconventional superconducting behavior with an in-plane and out-of-plane upper critical magnetic field of 30.1 and 5.3 tesla, and is stable at ambient conditions for at least 30 days. Our results show that chemical processing can make nontrivial 2D materials that were formerly only studied in laboratories commercially accessible.

4.
J Am Chem Soc ; 145(12): 6762-6772, 2023 Mar 29.
Article in English | MEDLINE | ID: mdl-36922736

ABSTRACT

Electrochemical transformation of CO2 into energy-dense liquid fuels provides a viable solution to challenges regarding climate change and nonrenewable resource dependence. Here, we report on the modification of a Cr-Ga oxide electrocatalyst through the introduction of nickel to generate a catalyst that generates 1-butanol at unprecedented faradaic efficiencies (ξ = 42%). This faradaic efficiency occurs at -1.48 V vs Ag/AgCl, with 1-butanol production commencing at an overpotential of 320 mV. At this potential, minor products include formate, methanol, acetic acid, acetone, and 3-hydroxybutanal. At -1.0 and -1.4 V, 3-hydroxybutanal becomes the primary product. This is in contrast to the nickel-free (Cr2O3)3(Ga2O3) system, where neither 3-hydroxybutanal nor 1-butanol was detected. Mechanistic studies show that formate is the initial CO2 reduction product and identify acetaldehyde as the key intermediate. Nickel is found responsible for the coupling and reduction of acetaldehyde to generate the higher molecular weight carbon products observed. To the best of our knowledge, this is the first electrocatalyst to generate 1-butanol with high faradaic efficiency.

5.
Adv Mater ; 35(10): e2209811, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36594103

ABSTRACT

This study presents a new material, "Hx CrS2 " (denotes approximate composition) formed by proton-exchange of NaCrS2 which has a measured capacity of 728 mAh g-1 with significant improvements to capacity retention, sustaining over 700 mAh g-1 during cycling experiments. This is the highest reported capacity for a transition metal sulfide electrode and outperforms the most promising proposed sodium anodes to date. Hx CrS2 exhibits a biphasic structure featuring alternating crystalline and amorphous lamella on the scale of a few nanometers. This unique structural motif enables reversible access to Cr redox in the material resulting in higher capacities than seen in the parent structure which features only S redox. Pretreatment by proton-exchange offers a route to materials such as Hx CrS2 which provide fast diffusion and high capacities for sodium-ion batteries.

6.
Inorg Chem ; 61(15): 5757-5761, 2022 Apr 18.
Article in English | MEDLINE | ID: mdl-35363469

ABSTRACT

The phyllosilicate family of clays is an intriguing collection of materials that make ideal models for studying the intercalation of alkali ions due to their layered topology and broadly tunable composition space. In this spirit, we present a hydrothermal method to prepare a layered iron phyllosilicate clay, Fe2Si4O10(OH)2, and an evaluation of its electrochemical performance for the (de)insertion of Li ions. Through careful structural refinement, we determined that this iron clay contains a 2:1 stacking sequence, which is directly analogous to the widely studied mineral montmorillonite, with the crystallites adopting a platelike morphology. Cyclic voltammetry and galvanostatic cycling reveal reversible insertion of lithium into the interstitial layers via a solid solution mechanism. Comparison of ion (de)intercalation with reports on other clay systems like muscovite, KFe2.75Si3.25O10(OH)2, which features a rigidly bound interlayer cation, demonstrates that controlling the net charge on the layers with phyllosilicate minerals is a route to enabling reversible cationic intercalation within the structure.

7.
Med Chem Res ; 29(4): 607-616, 2020 Apr.
Article in English | MEDLINE | ID: mdl-34552311

ABSTRACT

The orphan nuclear receptors estrogen-related receptors (ERRs) bind to the estrogen-related receptor response element (ERRE) to regulate transcriptional programs in cellular metabolism and cancer cell growth. In this study, we evaluated the potential for a pyrrole-imidazole polyamide to block ERRα binding to ERREs to inhibit gene expression. We demonstrated that the ERRE-targeted polyamide 1 blocked the binding of ERRα to the consensus ERRE and reduced the transcriptional activity of ERRα in cell culture. We further showed that inhibiting ERRα transcriptional activity with polyamide 1 led to reduced mitochondrial oxygen consumption, a primary biological effect regulated by ERRα. Finally, our data demonstrated that polyamide 1 is an inhibitor for cancer cell growth.

8.
Aging Cell ; 12(6): 1000-11, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23826727

ABSTRACT

Tissue regeneration diminishes with age, concurrent with declining hormone levels including growth factors such as insulin-like growth factor-1 (IGF-1). We investigated the molecular basis for such decline in pancreatic ß-cells where loss of proliferation occurs early in age and is proposed to contribute to the pathogenesis of diabetes. We studied the regeneration capacity of ß-cells in mouse model where PI3K/AKT pathway downstream of insulin/IGF-1 signaling is upregulated by genetic deletion of Pten (phosphatase and tensin homologue deleted on chromosome 10) specifically in insulin-producing cells. In this model, PTEN loss prevents the decline in proliferation capacity in aged ß-cells and restores the ability of aged ß-cells to respond to injury-induced regeneration. Using several animal and cell models where we can manipulate PTEN expression, we found that PTEN blocks cell cycle re-entry through a novel pathway leading to an increase in p16(ink4a), a cell cycle inhibitor characterized for its role in cellular senescence/aging. A downregulation in p16(ink4a) occurs when PTEN is lost as a result of cyclin D1 induction and the activation of E2F transcription factors. The activation of E2F transcriptional factors leads to methylation of p16(ink4a) promoter, an event that is mediated by the upregulation of polycomb protein, Ezh2. These analyses establish a novel PTEN/cyclin D1/E2F/Ezh2/p16(ink4a) signaling network responsible for the aging process and provide specific evidence for a molecular paradigm that explain how decline in growth factor signals such as IGF-1 (through PTEN/PI3K signaling) may control regeneration and the lack thereof in aging cells.


Subject(s)
Cell Cycle , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/pathology , PTEN Phosphohydrolase/metabolism , Aging/pathology , Animals , Cell Proliferation , Cyclin D1/metabolism , Cyclin-Dependent Kinase Inhibitor p27/metabolism , DNA Methylation/genetics , Down-Regulation/genetics , Enhancer of Zeste Homolog 2 Protein , Gene Deletion , Humans , Mice , PTEN Phosphohydrolase/deficiency , Polycomb Repressive Complex 2/genetics , Polycomb Repressive Complex 2/metabolism , Signal Transduction , Up-Regulation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...