Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 130(6): 1856-65, 2008 Feb 13.
Article in English | MEDLINE | ID: mdl-18198868

ABSTRACT

Au nanoparticles fully coated with omega-ferrocenyl hexanethiolate ligands, with average composition Au225(omega-ferrocenyl hexanethiolate)43, exhibit a unique combination of adsorption properties on Pt electrodes. The adsorbed layer is so robust that electrodes bearing submonolayer, monolayer, and multilayer quantities of these nanoparticles can be transferred to fresh electrolyte solutions and there exhibit stable ferrocene voltammetry over long periods of time. The kinetics of forming the robustly adsorbed layer are slow; monolayer and submonolayer deposition can be described by a rate law that is first order in nanoparticle concentration and in available electrode surface. The adsorption mechanism is proposed to involve entropically enhanced (multiple) ion-pair bridges between oxidized (ferrocenium) sites and certain specifically adsorbed electrolyte anions on the electrode. Adsorption is promoted by scanning to positive potentials (through the ferrocene wave) and by high concentrations of Bu4N+ X- electrolyte (X- = ClO4(-), PF6(-)) in the CH2Cl2 solvent; there is no adsorption if X- = p-toluenesulfonate or if the electrode is coated with an alkanethiolate monolayer. The electrode double layer capacity is not appreciably diminished by the adsorbed ferrocenated nanoparticles, which are gradually desorbed by scanning to potentials more negative than the electrode's potential of zero charge. At very slow scan rates, voltammetric current peaks are symmetrical and nearly reversible, but exhibit E(fwhm) considerably narrower (typically 35 mV) than ideally expected (90.6 mV, at 298 K) for a one-electron transfer or for reactions of multiple, independent redox centers with identical formal potentials. The peak narrowing is qualitatively explicable by a surface-activity effect invoking large, attractive lateral interactions between nanoparticles and, or alternatively, by a model in which ferrocene sites react serially at formal potentials that become successively altered as ion-pair bridges are formed. At faster scan rates, both deltaE(peak) and E(fwhm) increase in a manner consistent with a combination of uncompensated ohmic resistance of the electrolyte solution and of the adsorbed film, as distinct from behavior produced by slow electron transfer.


Subject(s)
Ferrous Compounds/chemistry , Gold/chemistry , Nanoparticles/chemistry , Sulfhydryl Compounds/chemistry , Adsorption , Anions/chemistry , Cations/chemistry , Electrodes , Ligands , Metallocenes , Models, Molecular , Molecular Structure , Platinum/chemistry , Surface Properties
2.
J Am Chem Soc ; 130(3): 798-9, 2008 Jan 23.
Article in English | MEDLINE | ID: mdl-18154337

ABSTRACT

A combination of immiscible molecules in the ligand shell of a gold nanoparticle (NP) has been shown to phase separate into a rippled structure; this phase separation can be used to direct the assembly of the NPs into chains. Here we demonstrate that only NPs within a certain size range can form chains, and we conclude that the rippled morphology of the ligand shell also exists only within that given size range. We corroborate this result with simulations of the ligand arrangement on NPs of various sizes.


Subject(s)
Gold/chemistry , Metal Nanoparticles/chemistry , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL
...