Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Appl ; 30(4): e02110, 2020 06.
Article in English | MEDLINE | ID: mdl-32115812

ABSTRACT

The challenges of restoration in dryland ecosystems are growing due to a rise in anthropogenic disturbance and increasing aridity. Plant functional traits are often used to predict plant performance and can offer a window into potential outcomes of restoration efforts across environmental gradients. We analyzed a database including 15 yr of seeding outcomes across 150 sites on the Colorado Plateau, a cold desert ecoregion in the western United States, and analyzed the independent and interactive effects of functional traits (seed mass, height, and specific leaf area) and local biologically relevant climate variables on seeding success. We predicted that the best models would include an interaction between plant traits and climate, indicating a need to match the right trait value to the right climate conditions to maximize seeding success. Indeed, we found that both plant height and seed size significantly interacted with temperature seasonality, with larger seeds and taller plants performing better in more seasonal environments. We also determined that these trait-environment patterns are not influenced by whether a species is native or nonnative. Our results inform the selection of seed mixes for restoring areas with specific climatic conditions, while also demonstrating the strong influence of temperature seasonality on seeding success in the Colorado Plateau region.


Subject(s)
Ecosystem , Plants , Colorado , Seeds , Temperature
2.
Glob Chang Biol ; 23(6): 2499-2508, 2017 06.
Article in English | MEDLINE | ID: mdl-27739159

ABSTRACT

Rising temperatures have begun to shift flowering time, but it is unclear whether phenotypic plasticity can accommodate projected temperature change for this century. Evaluating clines in phenological traits and the extent and variation in plasticity can provide key information on assessing risk of maladaptation and developing strategies to mitigate climate change. In this study, flower phenology was examined in 52 populations of big sagebrush (Artemisia tridentata) growing in three common gardens. Flowering date (anthesis) varied 91 days from late July to late November among gardens. Mixed-effects modeling explained 79% of variation in flowering date, of which 46% could be assigned to plasticity and genetic variation in plasticity and 33% to genetics (conditional R2  = 0.79, marginal R2  = 0.33). Two environmental variables that explained the genetic variation were photoperiod and the onset of spring, the Julian date of accumulating degree-days >5 °C reaching 100. The genetic variation was mapped for contemporary and future climates (decades 2060 and 2090), showing flower date change varies considerably across the landscape. Plasticity was estimated to accommodate, on average, a ±13-day change in flowering date. However, the examination of genetic variation in plasticity suggests that the magnitude of plasticity could be affected by variation in the sensitivity to photoperiod and temperature. In a warmer common garden, lower-latitude populations have greater plasticity (+16 days) compared to higher-latitude populations (+10 days). Mapped climatypes of flowering date for contemporary and future climates illustrate the wide breadth of plasticity and large geographic overlap. Our research highlights the importance of integrating information on genetic variation, phenotypic plasticity and climatic niche modeling to evaluate plant responses and elucidate vulnerabilities to climate change.


Subject(s)
Artemisia , Climate Change , Flowers , Seasons , Artemisia/growth & development , Artemisia/physiology , Climate , Phenotype , Reproduction , Temperature
3.
Am J Bot ; 103(11): 1950-1963, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27803000

ABSTRACT

PREMISE OF THE STUDY: Land-use change is cited as a primary driver of global biodiversity loss, with myriad consequences for species, populations, and ecosystems. However, few studies have examined its impact on species interactions, particularly pollination. Furthermore, when the effects of land-use change on pollination have been studied, the focus has largely been on species pollinated by diurnal pollinators, namely, bees and butterflies. Here, we focus on Oenothera harringtonii, a night-flowering, disturbance-adapted species that has experienced a range-wide gradient of land-use change. We tested the hypothesis that the negative impacts of land-use change are mitigated by long-distance pollination. METHODS: Our study included both temporal (4 yr) and spatial (19 populations range-wide, and 1, 2, and 5 km from the population center) data, providing a comprehensive understanding of the role of land-use change on pollination biology and reproduction. KEY RESULTS: We first confirmed that O. harringtonii is self-incompatible and reliant on pollinators for reproduction. We then showed that hawkmoths (primarily Hyles lineata) are highly reliable and effective pollinators in both space and time. Unlike other studies, we did not detect an effect of population size, increased isolation, or a reduction in suitable habitat in areas with evidence of land-use change on pollination (visitation, pollen removal and deposition). Furthermore, the proportion of suitable habitat and other fragmentation metrics examined were not associated with population size or density in this plant species. CONCLUSIONS: We conclude that nocturnal pollination of Oenothera harringtonii via hawkmoths is robust to the negative impacts of land-use change.


Subject(s)
Manduca/physiology , Pollination , Animals , Biodiversity , Demography , Ecosystem , Flowers/physiology , Oenothera/physiology , Pollen/physiology , Population Density , Reproduction
4.
Ecol Appl ; 26(4): 1136-53, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27509754

ABSTRACT

Conserving migratory birds is made especially difficult because of movement among spatially disparate locations across the annual cycle. In light of challenges presented by the scale and ecology of migratory birds, successful conservation requires integrating objectives, management, and monitoring across scales, from local management units to ecoregional and flyway administrative boundaries. We present an integrated approach using a spatially explicit energetic-based mechanistic bird migration model useful to conservation decision-making across disparate scales and locations. This model moves a Mallard-like bird (Anas platyrhynchos), through spring and fall migration as a function of caloric gains and losses across a continental-scale energy landscape. We predicted with this model that fall migration, where birds moved from breeding to wintering habitat, took a mean of 27.5 d of flight with a mean seasonal survivorship of 90.5% (95% Cl = 89.2%, 91.9%), whereas spring migration took a mean of 23.5 d of flight with mean seasonal survivorship of 93.6% (95% CI = 92.5%, 94.7%). Sensitivity analyses suggested that survival during migration was sensitive to flight speed, flight cost, the amount of energy the animal could carry, and the spatial pattern of energy availability, but generally insensitive to total energy availability per se. Nevertheless, continental patterns in the bird-use days occurred principally in relation to wetland cover and agricultural habitat in the fall. Bird-use days were highest in both spring and fall in the Mississippi Alluvial Valley and along the coast and near-shore environments of South Carolina. Spatial sensitivity analyses suggested that locations nearer to migratory endpoints were less important to survivorship; for instance, removing energy from a 1036 km2 stopover site at a time from the Atlantic Flyway suggested coastal areas between New Jersey and North Carolina, including the Chesapeake Bay and the North Carolina piedmont, are essential locations for efficient migration and increasing survivorship during spring migration but not locations in Ontario and Massachusetts. This sort of spatially explicit information may allow decision-makers to prioritize their conservation actions toward locations most influential to migratory success. Thus, this mechanistic model of avian migration provides a decision-analytic medium integrating the potential consequences of local actions to flyway-scale phenomena.


Subject(s)
Animal Migration , Anseriformes/physiology , Energy Metabolism/physiology , Models, Biological , Animals , Canada , Environmental Monitoring , United States
5.
PhytoKeys ; (35): 45-56, 2014.
Article in English | MEDLINE | ID: mdl-24843288

ABSTRACT

Two new species of Eschscholzia are described. Both are found in the deserts of California and one extends outside the state boundary into Arizona. Eschscholzia androuxii Still, sp. nov. is found mainly in and around Joshua Tree National Park in Riverside and San Bernardino counties. Eschscholzia papastillii Still, sp. nov. is found from the northern Mojave south through Joshua Tree National Park to central Imperial County. Both are annuals found in coarse, sandy soil and have yellow flowers typical of desert Eschscholzia. Eschscholzia papastillii has an expanded receptacular rim similar to that of Eschscholzia californica. Eschscholzia androuxii has anthocyanin bands around the stamen filaments.

SELECTION OF CITATIONS
SEARCH DETAIL
...