Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
JMIR Form Res ; 6(4): e32357, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35363149

ABSTRACT

BACKGROUND: The Integrated Clinical and Environmental Exposures Service (ICEES) serves as an open-source, disease-agnostic, regulatory-compliant framework and approach for openly exposing and exploring clinical data that have been integrated at the patient level with a variety of environmental exposures data. ICEES is equipped with tools to support basic statistical exploration of the integrated data in a completely open manner. OBJECTIVE: This study aims to further develop and apply ICEES as a novel tool for openly exposing and exploring integrated clinical and environmental data. We focus on an asthma use case. METHODS: We queried the ICEES open application programming interface (OpenAPI) using a functionality that supports chi-square tests between feature variables and a primary outcome measure, with a Bonferroni correction for multiple comparisons (α=.001). We focused on 2 primary outcomes that are indicative of asthma exacerbations: annual emergency department (ED) or inpatient visits for respiratory issues; and annual prescriptions for prednisone. RESULTS: Of the 157,410 patients within the asthma cohort, 26,332 (16.73%) had 1 or more annual ED or inpatient visits for respiratory issues, and 17,056 (10.84%) had 1 or more annual prescriptions for prednisone. We found that close proximity to a major roadway or highway, exposure to high levels of particulate matter ≤2.5 µm (PM2.5) or ozone, female sex, Caucasian race, low residential density, lack of health insurance, and low household income were significantly associated with asthma exacerbations (P<.001). Asthma exacerbations did not vary by rural versus urban residence. Moreover, the results were largely consistent across outcome measures. CONCLUSIONS: Our results demonstrate that the open-source ICEES can be used to replicate and extend published findings on factors that influence asthma exacerbations. As a disease-agnostic, open-source approach for integrating, exposing, and exploring patient-level clinical and environmental exposures data, we believe that ICEES will have broad adoption by other institutions and application in environmental health and other biomedical fields.

2.
Article in English | MEDLINE | ID: mdl-32708093

ABSTRACT

Environmental exposures have profound effects on health and disease. While public repositories exist for a variety of exposures data, these are generally difficult to access, navigate, and interpret. We describe the research, development, and application of three open application programming interfaces (APIs) that support access to usable, nationwide, exposures data from three public repositories: airborne pollutant estimates from the US Environmental Protection Agency; roadway data from the US Department of Transportation; and socio-environmental exposures from the US Census Bureau's American Community Survey. Three open APIs were successfully developed, deployed, and tested using random latitude/longitude values and time periods as input parameters. After confirming the accuracy of the data, we used the APIs to extract exposures data on 2550 participants from a cohort within the Environmental Polymorphisms Registry (EPR) at the National Institute of Environmental Health Sciences, and we successfully linked the exposure estimates with participant-level data derived from the EPR. We then conducted an exploratory, proof-of-concept analysis of the integrated data for a subset of participants with self-reported asthma and largely replicated our prior findings on the impact of select exposures and demographic factors on asthma exacerbations. Together, the three open exposures APIs provide a valuable resource, with application across environmental and public health fields.


Subject(s)
Air Pollutants/adverse effects , Environmental Exposure/adverse effects , Environmental Pollutants , Social Environment , Access to Information , Air Pollutants/analysis , Environmental Exposure/analysis , Female , Humans , Male , Socioeconomic Factors , United States , United States Environmental Protection Agency
3.
BMC Med Inform Decis Mak ; 20(1): 53, 2020 03 11.
Article in English | MEDLINE | ID: mdl-32160884

ABSTRACT

BACKGROUND: Informatics tools to support the integration and subsequent interrogation of spatiotemporal data such as clinical data and environmental exposures data are lacking. Such tools are needed to support research in environmental health and any biomedical field that is challenged by the need for integrated spatiotemporal data to examine individual-level determinants of health and disease. RESULTS: We have developed an open-source software application-FHIR PIT (Health Level 7 Fast Healthcare Interoperability Resources Patient data Integration Tool)-to enable studies on the impact of individual-level environmental exposures on health and disease. FHIR PIT was motivated by the need to integrate patient data derived from our institution's clinical warehouse with a variety of public data sources on environmental exposures and then openly expose the data via ICEES (Integrated Clinical and Environmental Exposures Service). FHIR PIT consists of transformation steps or building blocks that can be chained together to form a transformation and integration workflow. Several transformation steps are generic and thus can be reused. As such, new types of data can be incorporated into the modular FHIR PIT pipeline by simply reusing generic steps or adding new ones. We validated FHIR PIT in the context of a driving use case designed to investigate the impact of airborne pollutant exposures on asthma. Specifically, we replicated published findings demonstrating racial disparities in the impact of airborne pollutants on asthma exacerbations. CONCLUSIONS: While FHIR PIT was developed to support our driving use case on asthma, the software can be used to integrate any type and number of spatiotemporal data sources at a level of granularity that enables individual-level study. We expect FHIR PIT to facilitate research in environmental health and numerous other biomedical disciplines.


Subject(s)
Electronic Health Records , Environmental Exposure , Health Information Interoperability/standards , Software Design , Software , Health Level Seven , Humans , Spatio-Temporal Analysis , Systems Integration , Workflow
4.
J Am Med Inform Assoc ; 26(10): 1064-1073, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31077269

ABSTRACT

OBJECTIVE: This study aimed to develop a novel, regulatory-compliant approach for openly exposing integrated clinical and environmental exposures data: the Integrated Clinical and Environmental Exposures Service (ICEES). MATERIALS AND METHODS: The driving clinical use case for research and development of ICEES was asthma, which is a common disease influenced by hundreds of genes and a plethora of environmental exposures, including exposures to airborne pollutants. We developed a pipeline for integrating clinical data on patients with asthma-like conditions with data on environmental exposures derived from multiple public data sources. The data were integrated at the patient and visit level and used to create de-identified, binned, "integrated feature tables," which were then placed behind an OpenAPI. RESULTS: Our preliminary evaluation results demonstrate a relationship between exposure to high levels of particulate matter ≤2.5 µm in diameter (PM2.5) and the frequency of emergency department or inpatient visits for respiratory issues. For example, 16.73% of patients with average daily exposure to PM2.5 >9.62 µg/m3 experienced 2 or more emergency department or inpatient visits for respiratory issues in year 2010 compared with 7.93% of patients with lower exposures (n = 23 093). DISCUSSION: The results validated our overall approach for openly exposing and sharing integrated clinical and environmental exposures data. We plan to iteratively refine and expand ICEES by including additional years of data, feature variables, and disease cohorts. CONCLUSIONS: We believe that ICEES will serve as a regulatory-compliant model and approach for promoting open access to and sharing of integrated clinical and environmental exposures data.


Subject(s)
Asthma , Datasets as Topic , Environmental Exposure , Information Dissemination , Intersectoral Collaboration , Translational Research, Biomedical , Access to Information , Censuses , Computational Biology , Female , Government Regulation , Humans , Male , Particulate Matter , United States , User-Computer Interface
5.
Toxicol Appl Pharmacol ; 182(1): 55-65, 2002 Jul 01.
Article in English | MEDLINE | ID: mdl-12127263

ABSTRACT

Determining the key events in the induction of liver cancer in mice by trichloroethylene (TRI) is important in the determination of how risks from this chemical should be treated at low doses. At least two metabolites can contribute to liver cancer in mice, dichloroacetate (DCA) and trichloroacetate (TCA). TCA is produced from metabolism of TRI at systemic concentrations that can clearly contribute to this response. As a peroxisome proliferator and a species-specific carcinogen, TCA may not be important in the induction of liver cancer in humans at the low doses of TRI encountered in the environment. Because DCA is metabolized much more rapidly than TCA, it has not been possible to directly determine whether it is produced at carcinogenic levels. Unlike TCA, DCA is active as a carcinogen in both mice and rats. Its low-dose effects are not associated with peroxisome proliferation. The present study examines whether biomarkers for DCA and TCA can be used to determine if the liver tumor response to TRI seen in mice is completely attributable to TCA or if other metabolites, such as DCA, are involved. Previous work had shown that DCA produces tumors in mice that display a diffuse immunoreactivity to a c-Jun antibody (Santa Cruz Biotechnology, SC-45), whereas TCA-induced tumors do not stain with this antibody. In the present study, we compared the c-Jun phenotype of tumors induced by DCA or TCA alone to those induced when they are given together in various combinations and to those induced by TRI given in an aqueous vehicle. When given in various combinations, DCA and TCA produced a few tumors that were c-Jun+, many that were c-Jun-, but a number with a mixed phenotype that increased with the relative dose of DCA. Sixteen TRI-induced tumors were c-Jun+, 13 were c-Jun-, and 9 had a mixed phenotype. Mutations of the H-ras protooncogene were also examined in DCA-, TCA-, and TRI-induced tumors. The mutation frequency detected in tumors induced by TCA was significantly different from that observed in TRI-induced tumors (0.44 vs 0.21, p < 0.05), whereas that observed in DCA-induced tumors (0.33) was intermediate between values obtained with TCA and TRI, but not significantly different from TRI. No significant differences were found in the mutation spectra of tumors produced by the three compounds. The presence of mutations in H-ras codon 61 appeared to be a late event, but ras-dependent signaling pathways were activated in all tumors. These data are not consistent with the hypothesis that all liver tumors induced by TRI were produced by TCA.


Subject(s)
Dichloroacetic Acid/toxicity , Liver Neoplasms/chemically induced , Trichloroacetic Acid/toxicity , Trichloroethylene/toxicity , Animals , Blotting, Western , DNA, Neoplasm/chemistry , DNA, Neoplasm/genetics , Drug Interactions , Genes, jun/genetics , Genes, ras/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Male , Mice , Mutation , Polymerase Chain Reaction , Random Allocation , Sequence Analysis, DNA , Solvents/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...