Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biochim Biophys Acta ; 1320(1): 83-94, 1997 May 16.
Article in English | MEDLINE | ID: mdl-9186780

ABSTRACT

Transhydrogenase is a proton pump. It has separate binding sites for NAD+/NADH (on domain I of the protein) and for NADP+/NADPH (on domain III). Purified, detergent-dispersed transhydrogenase from Escherichia coli catalyses the reduction of the NAD+ analogue, acetylpyridine adenine dinucleotide (AcPdAD+), by NADH at a slow rate in the absence of added NADP+ or NADPH. Although it is slow, this reaction is surprising, since transhydrogenase is generally thought to catalyse hydride transfer between NAD(H)--or its analogues and NADP(H)--or its analogues, by a ternary complex mechanism. It is shown that hydride transfer occurs between the 4A position on the nicotinamide ring of NADH and the 4A position of AcPdAD+. On the basis of the known stereospecificity of the enzyme, this eliminates the possibilities of transhydrogenation(a) from NADH in domain I to AcPdAD+ wrongly located in domain III; and (b) from NADH wrongly located in domain III to AcPdAD+ in domain I. In the presence of low concentrations of added NADP+ or NADPH, detergent-dispersed E. coli transhydrogenase catalyses the very rapid reduction of AcPdAD+ by NADH. This reaction is cyclic; it takes place via the alternate oxidation of NADPH by AcPdAD+ and the reduction of NADP+ by NADH, while the NADPH and NADP+ remain tightly bound to the enzyme. In the present work, it is shown that the rate of the cyclic reaction and the rate of reduction of AcPdAD+ by NADH in the absence of added NADP+/NADPH, have similar dependences on pH and on MgSO4 concentration and that they have a similar kinetic character. It is therefore suggested that the reduction of AcPdAD+ by NADH is actually a cyclic reaction operating, either with tightly bound NADP+/NADPH on a small fraction (< 5%) of the enzyme, or with NAD+/NADH (or AcPdAD+/AcPdADH) unnaturally occluded within the domain III site. Transhydrogenase associated with membrane vesicles (chromatophores) of Rhodospirillum rubrum also catalyses the reduction of AcPdAD+ by NADH in the absence of added NADP+/NADPH. When the chromatophores were stripped of transhydrogenase domain I, that reaction was lost in parallel with 'normal reverse' transhydrogenation (e.g., the reduction of AcPdAD+ by NADPH). The two reactions were fully recovered upon reconstitution with recombinant domain I protein. However, after repeated washing of the domain I-depleted chromatophores, reverse transhydrogenation activity (when assayed in the presence of domain I) was retained, whereas the reduction of AcPdAD+ by NADH declined in activity. Addition of low concentrations of NADP+ or NADPH always supported the same high rate of the NADH-->AcPdAD+ reaction independently of how often the membranes were washed. It is concluded that, as with the purified E. coli enzyme, the reduction of AcPdAD+ by NADH in chromatophores is a cyclic reaction involving nucleotides that are tightly bound in the domain III site of transhydrogenase. However, in the case of R. rubrum membranes it can be shown with some certainty that the bound nucleotides are NADP+ or NADPH. The data are thus adequately explained without recourse to suggestions of multiple nucleotide-binding sites on transhydrogenase.


Subject(s)
NAD/analogs & derivatives , NAD/pharmacology , Binding Sites , Chromatophores , Escherichia coli/enzymology , NAD/metabolism , NADH, NADPH Oxidoreductases/isolation & purification , NADH, NADPH Oxidoreductases/metabolism , Oxidation-Reduction
2.
Biochim Biophys Acta ; 1229(1): 49-58, 1995 Apr 04.
Article in English | MEDLINE | ID: mdl-7703263

ABSTRACT

Proton-translocating transhydrogenase was solubilised and purified from membranes of Escherichia coli. Consistent with recent evidence [Hutton, M., Day, J., Bizouarn, T. and Jackson, J.B. (1994) Eur. J. Biochem. 219, 1041-1051], at low pH and salt concentration, the enzyme catalysed rapid reduction of the NAD+ analogue AcPdAD+ by a combination of NADH and NADPH. At saturating concentrations of NADPH, the dependence of the steady-state rate on the concentrations of NADH and AcPdAD+ indicated that, with respect to these two nucleotides, the reaction proceeds by a ping-pong mechanism. High concentrations of either NADH or AcPdAD+ led to substrate inhibition. These observations support the view that, in this reaction, NADP(H) remains bound to the enzyme: AcPdAD+ is reduced by enzyme-bound NADPH, and NADH is oxidised by enzyme-bound NADP+, in a cyclic process. When this reaction was carried out with [4A-2H]NADH replacing [4A-1H]NADH, the rate was decreased by 46%, suggesting that the H- transfer steps are rate-limiting. In simple 'reverse' transhydrogenation, the reduction of AcPdAD+ was slower with [4B-2H]NADPH than with [4B-1H]NADPH when the reaction was performed at pH 8.0, but there was no deuterium isotope effect at pH 6.0. This indicates that H- transfer is rate-limiting at pH 8.0 and supports our earlier suggestion that NADP+ release from the enzyme is rate-limiting at low pH. The lack of a deuterium isotope effect in the reduction of thio-NADP+ by NADH at low pH is also consistent with the view that NADPH release from the enzyme is slow under these conditions. A steady-state rate equation is derived for the reduction of AcPdAD+ by NADPH plus NADH, assuming operation of the cyclic pathway. It adequately accounts for the pH dependence of the enzyme, for the features described above and for kinetic characteristics of E. coli transhydrogenase described in the literature.


Subject(s)
Escherichia coli/enzymology , NADP Transhydrogenases/metabolism , NADP/metabolism , Kinetics , NAD/analogs & derivatives , NAD/metabolism , NADP Transhydrogenases/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...