Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Genome Announc ; 2(5)2014 Sep 04.
Article in English | MEDLINE | ID: mdl-25189591

ABSTRACT

Haemophilus parasuis is a normal commensal of the upper respiratory tract of healthy pigs. However, in conjunction with stress and/or viral infections, or in immunocompromised animals, H. parasuis can transform into a pathogen causing Glasser's disease, which is typically characterized by fibrinous polyserositis, polyarthritis, meningitis, and sometimes acute pneumonia and septicemia. H. parasuis serotype 5 is highly virulent and more frequently isolated from respiratory and systemic infection in pigs. Recently Newport Laboratories isolated highly virulent H. parasuis serotype 4 strains from the tissues of diseased pigs. This study was undertaken to identify the genes responsible for H. parasuis serotype 4 virulence. To achieve this objective we performed genome-wide association studies (GWAS) across two virulent and three avirulent H. parasuis serotype 4 strains.

2.
Genome Announc ; 2(3)2014 Jun 12.
Article in English | MEDLINE | ID: mdl-24926047

ABSTRACT

Since the outbreak of porcine epidemic diarrhea virus (PEDV) in May 2013, U.S. swine producers have lost almost five million baby pigs. In an attempt to understand the evolution of PEDV in the United States and possibly develop a control strategy, we compared the genome sequences of a PEDV strain isolated from an infected piglet against its in vitro adapted version. The original PEDV strain was grown in Vero cells and passed 10 times serially in a MARC145 cell line. The sequence analysis of the native PEDV strain and in vitro passaged virus shows that the cell culture adaptation specifically modifies PEDV spike protein whereas the open reading frame 1a/b (ORF1a/b)-encoded polyprotein, the nucleoprotein, NS3B (ORF3), and membrane and envelope proteins remain unchanged.

3.
Clin Vaccine Immunol ; 19(9): 1457-64, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22815146

ABSTRACT

Routine antigenic characterization of swine influenza virus isolates in a high-throughput serum neutralization (HTSN) assay found that approximately 20% of isolates were not neutralized by a panel of reference antisera. Genetic analysis revealed that nearly all of the neutralization-resistant isolates possessed a seasonal human-lineage hemagglutinin (HA; δ cluster). Subsequent sequencing analysis of full-length HA identified a conserved N144 residue present only in neutralization-resistant strains. N144 lies in a predicted N-linked glycosylation consensus sequence, i.e., N-X-S/T (where X is any amino acid except for proline). Interestingly, neutralization-sensitive viruses all had predicted N-linked glycosylation sites at N137 or N142, with threonine (T) occupying position 144 of HA. Consistent with the HTSN assay, hemagglutination inhibition (HI) and serum neutralization (SN) assays demonstrated that migration of the potential N-linked glycosylation site from N137 or N142 to N144 resulted in a >8-fold decrease in titers. These results were further confirmed in a reverse genetics system where syngeneic viruses varying only by predicted N-glycosylation sites at either N142 or N144 exhibited distinct antigenic characteristics like those observed in field isolates. Molecular modeling of the hemagglutinin protein containing N142 or N144 in complex with a neutralizing antibody suggested that N144-induced potential glycosylation may sterically hinder access of antibodies to the hemagglutinin head domain, allowing viruses to escape neutralization. Since N-linked glycosylation at these sites has been implicated in genetic and antigenic evolution of human influenza A viruses, we conclude that the relocation of the hemagglutinin N-linked glycosylation site from N142 to N144 renders swine influenza virus δ-cluster viruses resistant to antibody-mediated neutralization.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Cross Reactions , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Influenza A virus/immunology , Amino Acid Substitution , Animals , Glycosylation , Hemagglutination Inhibition Tests , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Models, Molecular , Mutant Proteins/chemistry , Mutant Proteins/genetics , Mutant Proteins/immunology , Mutation, Missense , Protein Conformation , Swine
4.
J Vet Diagn Invest ; 22(3): 352-9, 2010 May.
Article in English | MEDLINE | ID: mdl-20453207

ABSTRACT

In vivo, neutralizing antibodies are critical for viral clearance. A high-throughput serum neutralization (HTSN) assay was developed to antigenically categorize Swine influenza virus (SIV) isolates. Uncategorized viruses were tested using a panel of antisera representing the H3N2 SIV subtypes and the results expressed as a serum neutralization ratio. Antisera were generated against contemporary isolates representing circulating H3N2 SIV subtypes (clusters I, III, IV). Reference viruses and the corresponding antisera were evaluated using traditional hemagglutination inhibition (HI) and the HTSN assays and good correlation (r = 0.84) was observed between the 2 tests. Categorical clustering of 40 recent (2008-2009) SIV isolates was assessed using the HTSN assay. The H3N2 SIV isolates with amino acid similarity >97% to the commonly used H3N2 cluster IV reference strain A/Swine/Ontario/33853/2005 (ON05) showed strong reactivity with cluster IV antisera. Isolates with <97% amino acid similarity to ON05 sporadically or completely failed to react with any antiserum. A cluster of 3 isolates with weak reaction with cluster III antiserum may be a potential emerging cluster of H3N2 with moderate genetic similarity to cluster II H3N2 (93% similarity). Potential uses of the HTSN assay include identification of broadly cross-reactive or antigenically distinct SIV isolates for use in vaccine virus selection or as part of surveillance efforts monitoring antigenic drift.


Subject(s)
Influenza A Virus, H3N2 Subtype/immunology , Orthomyxoviridae Infections/veterinary , Swine Diseases/virology , Amino Acid Sequence , Animals , Antigens, Viral/blood , Base Sequence , Bird Diseases/immunology , Bird Diseases/virology , Birds , Genes, Viral , Hemagglutination Inhibition Tests/veterinary , Humans , Influenza A Virus, H1N1 Subtype/immunology , Influenza, Human/immunology , Molecular Sequence Data , Neutralization Tests/veterinary , Orthomyxoviridae Infections/immunology , Simian Immunodeficiency Virus/immunology , Swine , Swine Diseases/immunology , Viral Vaccines/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...