Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 152
Filter
1.
Geroscience ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38981983

ABSTRACT

Frailty has been linked to inflammation and changes in body composition, but the findings are inconsistent. To explore this, we used the Frailty Index (FI) definition to (1) investigate the association between levels of inflammatory markers (baseline) and change in FI score after 8 years of follow-up and (2) investigate the longitudinal associations between inflammatory markers, body composition, and frailty. Home-dwelling elderly (≥ 70 years) were invited to participate in the study and re-invited to a follow-up visit 8 years later. This study includes a total of 133 participants. The inflammatory markers included were high-sensitive C-reactive protein (hs-CRP), interleukin 6 (IL-6), tumor necrosis factor alpha (TNF-α), and glycoprotein acetyls (Gp-acetyls). We used the body composition markers fat mass, fat-free mass, and waist circumference. The FI score consisted of 38 variables. Additional clinical assessments such as blood pressure and body mass index (BMI), as well as information about daily medications, were collected at both visits. Linear regression model and Spearman's rank correlation were used to investigate associations. We showed that the FI score increased after 8 years, and participants with higher hs-CRP levels at baseline had the largest change in the FI score. Changes in fat mass were significantly correlated with changes in hs-CRP and IL-6, and changes in waist circumference were significantly correlated with changes in TNF-α. The use of drugs increased during the 8 years of follow-up, which may have attenuated the associations between inflammation and frailty. However, elevated concentrations of hs-CRP in the elderly may be associated with an increased risk of frailty in subsequent years.

2.
Am J Pathol ; 2024 May 03.
Article in English | MEDLINE | ID: mdl-38704091

ABSTRACT

A number of patients with colon cancer with local or local advanced disease suffer from recurrence and there is an urgent need for better prognostic biomarkers in this setting. Here, the transcriptomic landscape of mRNAs, long noncoding RNAs, snRNAs, small nucleolar RNAs (snoRNAs), small Cajal body-specific RNAs, pseudogenes, and circular RNAs, as well as RNAs denoted as miscellaneous RNAs, was profiled by total RNA sequencing. In addition to well-known coding and noncoding RNAs, differential expression analysis also uncovered transcripts that have not been implicated previously in colon cancer, such as RNA5SP149, RNU4-2, and SNORD3A. Moreover, there was a profound global up-regulation of snRNA pseudogenes, snoRNAs, and rRNA pseudogenes in more advanced tumors. A global down-regulation of circular RNAs in tumors relative to normal tissues was observed, although only a few were expressed differentially between tumor stages. Many previously undescribed transcripts, including RNU6-620P, RNU2-20P, VTRNA1-3, and RNA5SP60, indicated strong prognostic biomarker potential in receiver operating characteristics analyses. In summary, this study unveiled numerous differentially expressed RNAs across various classes between recurrent and nonrecurrent colon cancer. Notably, there was a significant global up-regulation of snRNA pseudogenes, snoRNAs, and rRNA pseudogenes in advanced tumors. Many of these newly discovered candidates demonstrate a strong prognostic potential for stage II colon cancer.

3.
Food Nutr Res ; 682024.
Article in English | MEDLINE | ID: mdl-38571914

ABSTRACT

The aim of this scoping review was to conduct evidence-based documentation between fish intake and health outcomes for food-based dietary guidelines (FBDGs) in the Nordic Nutrition Recommendations (NNR) 2023. For most health outcomes, the evidence for fish oil and n-3 long chain (LC) polyunsaturated fatty acids (PUFA) supplementation was included when examining evidence between fish intake and health. In this review, conclusions from qualified systematic reviews (qSR) approved by NNR2023 are included. In addition, conclusions of a de novo systematic reviews on the topic of n-3 LC-PUFA, asthma, and allergy are included. Finally, a systematic literature search was performed limited to systematic reviews and meta-analysis published between 2011 and September 2021. In total, 21 papers from the systematic literature search, four qSR, and eight reports were included addressing the association between fish intake, fish oil, and n-3 LC-PUFA supplementation on several health outcomes. These included cardiovascular disease (CVD), type 2 diabetes, cancers (colorectal, breast, and prostate), metabolic syndrome, obesity, mortality, cognition and mental health, pregnancy-related outcomes (preterm birth and birth weight), and outcomes specific for children (neurodevelopment, and risk of food allergies, and asthma). In addition, intermediate risk factors such as blood lipids, glucose, C-reactive protein, and blood pressure were reviewed. Based on current evidence, fish consumption can have beneficial effects to prevent coronary heart disease (CHD) and stroke incidence, and lower mortality from CVD, CHD, myocardial infarction (MI), and stroke, as well as total mortality risk. In addition, fish consumption is beneficial for preventing cognitive decline in adults (e.g. dementia and Alzheimer's disease). Fish intake may also prevent metabolic syndrome, supported by an observed association between fish intake and reduction in plasma triglycerides and increase in high-density lipoprotein (HDL) cholesterol levels. Data from fish oil and n-3 LC-PUFA supplementation studies supports the conclusions on the effects of fish consumption on most of the health outcomes.

4.
Atherosclerosis ; 392: 117507, 2024 May.
Article in English | MEDLINE | ID: mdl-38663317

ABSTRACT

BACKGROUND AND AIMS: Elderly familial hypercholesterolemia (FH) patients are at high risk of coronary heart disease (CHD) due to high cholesterol burden and late onset of effective cholesterol-lowering therapies. A subset of these individuals remains free from any CHD event, indicating the potential presence of protective factors. Identifying possible cardioprotective gene expression profiles could contribute to our understanding of CHD prevention and future preventive treatment. Therefore, this study aimed to investigate gene expression profiles in elderly event-free FH patients. METHODS: Expression of 773 genes was analysed using the Nanostring Metabolic Pathways Panel, in peripheral blood mononuclear cells (PBMCs) from FH patients ≥65 years without CHD (FH event-free, n = 44) and with CHD (FH CHD, n = 39), and from healthy controls ≥70 years (n = 39). RESULTS: None of the genes were differentially expressed between FH patients with and without CHD after adjusting for multiple testing. However, at nominal p < 0.05, we found 36 (5%) differentially expressed genes (DEGs) between the two FH groups, mainly related to lipid metabolism (e.g. higher expression of ABCA1 and ABCG1 in FH event-free) and immune responses (e.g. lower expression of STAT1 and STAT3 in FH event-free). When comparing FH patients to controls, the event-free group had fewer DEGs than the CHD group; 147 (19%) and 219 (28%) DEGs, respectively. CONCLUSIONS: Elderly event-free FH patients displayed a different PBMC gene expression profile compared to FH patients with CHD. Differences in gene expression compared to healthy controls were more pronounced in the CHD group, indicating a less atherogenic gene expression profile in event-free individuals. Overall, identification of cardioprotective factors could lead to future therapeutic targets.


Subject(s)
Coronary Disease , Gene Expression Profiling , Hyperlipoproteinemia Type II , Humans , Hyperlipoproteinemia Type II/genetics , Hyperlipoproteinemia Type II/blood , Male , Female , Aged , Coronary Disease/genetics , Case-Control Studies , Leukocytes, Mononuclear/metabolism , Age Factors , Transcriptome , Aged, 80 and over
5.
BMC Geriatr ; 24(1): 175, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38373890

ABSTRACT

BACKGROUND: Low-grade, chronic inflammation during ageing, ("inflammageing"), is suggested to be involved in the development of frailty in older age. However, studies on the association between frailty, using the frailty index definition, and inflammatory markers are limited. The aim of this study was to investigate the relationship between inflammatory markers and frailty index (FI) in older, home-dwelling adults. METHOD: Home-dwelling men and women aged ≥ 70 years old, living in South-East Norway were recruited and included in a cross-sectional study. The FI used in the current study was developed according to Rockwood's frailty index and included 38 variables, resulting in an FI score between 0 and 1 for each participant. Circulating inflammatory markers (IL-6, CRP, IGF-1, cystatin C, cathepsin S, and glycoprotein Acetyls) were analyzed from non-fasting blood samples using ELISA. Whole-genome PBMC transcriptomics was used to study the association between FI score and inflammation. RESULTS: The study population comprised 403 elderly (52% women), with a median age of 74 years and a mean BMI of 26.2 kg/m2. The mean FI score for the total group was 0.15 (range 0.005-0.56). The group was divided into a frail group (FI score ≥ 0.25) and non-frail group. After adjusting for BMI, age, sex, and smoking in the whole group, IL-6, cathepsin S, cystatin C, and Gp-acetyls remained significant associated to FI score (IL-6: 0.002, 95% CI: 0.001, 0.002, cathepsin S: 6.7e-06, 95% CI 2.44e-06, 0.00001, cystatin C: 0.004, 95% CI: 0.002, 0.006, Gp- Acetyls: 0.09, 95% CI: 0.05, 0.13, p < 0.01 for all), while CRP and IGF-1 were not (0.0003, 95% CI: -00001, 0.0007, p = 0.13, (-1.27e-06), 95% CI: (-0.0003), 0.0003, p = 0.99). There was a significant association between FI score and inflammatory markers, and FI score and monocyte-specific gene expression. CONCLUSIONS: We found an association between FI score and inflammatory markers, and between FI score and monocyte-specific gene expression among elderly subjects above 70 years of age. Whether inflammation is a cause or consequence of frailty and whether the progression of frailty can be attenuated by reducing inflammation remains to be clarified.


Subject(s)
Frail Elderly , Frailty , Aged , Male , Humans , Female , Frailty/diagnosis , Frailty/epidemiology , Cross-Sectional Studies , Insulin-Like Growth Factor I , Cystatin C , Interleukin-6 , Leukocytes, Mononuclear , Inflammation/diagnosis , Inflammation/epidemiology , Cathepsins , Geriatric Assessment/methods
6.
Atherosclerosis ; 389: 117433, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38219649

ABSTRACT

The scientific evidence supporting the current dietary recommendations for fat quality keeps accumulating; however, a paradoxical distrust has taken root among many researchers, clinicians, and in parts of the general public. One explanation for this distrust may relate to an incomplete overview of the totality of the evidence for the link between fat quality as a dietary exposure, and health outcomes such as atherosclerotic cardiovascular disease (ASCVD). Therefore, the main aim of the present narrative review was to provide a comprehensive overview of the rationale for dietary recommendations for fat intake, limiting our discussion to ASCVD as outcome. Herein, we provide a core framework - a causal model - that can help us understand the evidence that has accumulated to date, and that can help us understand new evidence that may become available in the future. The causal model for fat quality and ASCVD is comprised of three key research questions (RQs), each of which determine which scientific methods are most appropriate to use, and thereby which lines of evidence that should feed into the causal model. First, we discuss the link between low-density lipoprotein (LDL) particles and ASCVD (RQ1); we draw especially on evidence from genetic studies, randomized controlled trials (RCTs), epidemiology, and mechanistic studies. Second, we explain the link between dietary fat quality and LDL particles (RQ2); we draw especially on metabolic ward studies, controlled trials (randomized and non-randomized), and mechanistic studies. Third, we explain the link between dietary fat quality, LDL particles, and ASCVD (RQ3); we draw especially on RCTs in animals and humans, epidemiology, population-based changes, and experiments of nature. Additionally, the distrust over dietary recommendations for fat quality may partly relate to an unclear understanding of the scientific method, especially as applied in nutrition research, including the process of developing dietary guidelines. We therefore also aimed to clarify this process. We discuss how we assess causality in nutrition research, and how we progress from scientific evidence to providing dietary recommendations.


Subject(s)
Atherosclerosis , Cardiovascular Diseases , Animals , Humans , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/prevention & control , Cardiovascular Diseases/complications , Dietary Fats , Lipoproteins , Lipoproteins, LDL , Randomized Controlled Trials as Topic
7.
FEBS J ; 291(7): 1506-1529, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38145505

ABSTRACT

The kainate receptors GluK1-3 (glutamate receptor ionotropic, kainate receptors 1-3) belong to the family of ionotropic glutamate receptors and are essential for fast excitatory neurotransmission in the brain, and are associated with neurological and psychiatric diseases. How these receptors can be modulated by small-molecule agents is not well understood, especially for GluK3. We show that the positive allosteric modulator BPAM344 can be used to establish robust calcium-sensitive fluorescence-based assays to test agonists, antagonists, and positive allosteric modulators of GluK1-3. The half-maximal effective concentration (EC50) of BPAM344 for potentiating the response of 100 µm kainate was determined to be 26.3 µm for GluK1, 75.4 µm for GluK2, and 639 µm for GluK3. Domoate was found to be a potent agonist for GluK1 and GluK2, with an EC50 of 0.77 and 1.33 µm, respectively, upon co-application of 150 µm BPAM344. At GluK3, domoate acts as a very weak agonist or antagonist with a half-maximal inhibitory concentration (IC50) of 14.5 µm, in presence of 500 µm BPAM344 and 100 µm kainate for competition binding. Using H523A-mutated GluK3, we determined the first dimeric structure of the ligand-binding domain by X-ray crystallography, allowing location of BPAM344, as well as zinc-, sodium-, and chloride-ion binding sites at the dimer interface. Molecular dynamics simulations support the stability of the ion sites as well as the involvement of Asp761, Asp790, and Glu797 in the binding of zinc ions. Using electron microscopy, we show that, in presence of glutamate and BPAM344, full-length GluK3 adopts a dimer-of-dimers arrangement.


Subject(s)
Kainic Acid , Receptors, Kainic Acid , Thiazines , Receptors, Kainic Acid/genetics , Receptors, Kainic Acid/agonists , Kainic Acid/pharmacology , Cyclic S-Oxides , Zinc/metabolism
8.
BMC Health Serv Res ; 23(1): 1259, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37968693

ABSTRACT

BACKGROUND: Norwegian school health services received a national best-practice guideline in 2017. To promote healthy life skills and identify adolescents needing support, the guideline includes strong recommendations for individual consultations with all 8th graders and increased collaboration with schools. To help implement the recommendations, a blended implementation strategy (SchoolHealth) was co-created with school nurses, students, and stakeholders. SchoolHealth consists of three implementation elements: Digital dialog and administration tool (audit and feedback +), Dialog support (external consultation), and Collaboration materials (targeted dissemination). This hybrid study will test the main and combined effects of the elements on guideline fidelity and effectiveness. METHODS: The GuideMe study is a factorial cluster randomized controlled trial examining SchoolHealth's effectiveness on guideline fidelity and guideline effectiveness goals. Forty Norwegian secondary schools will be randomized to eight different combinations of the elements in SchoolHealth. Participants will include school nurses and school personnel from these schools, and 8th grade students (n = 1200). Primary outcomes are school nurses' fidelity to the guidelines and student's ability to cope with their life (i.e., health literacy, positive health behaviors and self-efficacy). Quantitative methods will be used to test effects and mechanisms, while mixed- and qualitative methods will be used to explore mechanisms, experiences, and other phenomena in depth. Participants will complete digital questionnaires at the start and end of the schoolyear, and after the consultation during the schoolyear. The study will run in two waves, each lasting for one school year. The multifactorial design allows testing of interactions and main effects due to equal distribution of all factors within each main effect. Sustainment and scale-up of optimized SchoolHealth elements using national infrastructure are simultaneously prepared. DISCUSSION: The study will investigate possible effects of the implementation elements in isolation and in combination, and hypothesized implementation mechanisms. In-depth study of user experiences will inform improvements to elements in SchoolHealth. The results will yield causal knowledge about implementation strategies and the mechanisms through which they assert effects. Mixed-methods will provide insights into how and when the elements work. Optimizing guideline implementation elements can support adolescents in a crucial life phase. TRAIL REGISTRATION: ISRCTN24173836. Registration date 8 August 2022.


Subject(s)
School Health Services , Schools , Adolescent , Humans , Health Behavior , Students , Randomized Controlled Trials as Topic
9.
Int J Mol Sci ; 24(19)2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37834026

ABSTRACT

Inhibitory crosstalk between estrogen receptor alpha (ERα) and aryl hydrocarbon receptor (AHR) regulates 17ß-estradiol (E2)-dependent breast cancer cell signaling. ERα and AHR are transcription factors activated by E2 and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), respectively. Dietary ligands resveratrol (RES) and 3,3'diindolylmethane (DIM) also activate ERα while only DIM activates AHR and RES represses it. DIM and RES are reported to have anti-cancer and anti-inflammatory properties. Studies with genome-wide targets and AHR- and ERα-regulated genes after DIM and RES are unknown. We used chromatin immunoprecipitation with high-throughput sequencing and transcriptomics to study ERα as well as AHR coregulation in MCF-7 human breast cancer cells treated with DIM, RES, E2, or TCDD alone or E2+TCDD for 1 and 6 h, respectively. ERα bound sites after being DIM enriched for the AHR motif but not after E2 or RES while AHR bound sites after being DIM and E2+TCDD enriched for the ERE motif but not after TCDD. More than 90% of the differentially expressed genes closest to an AHR binding site after DIM or E2+TCDD also had an ERα site, and 60% of the coregulated genes between DIM and E2+TCDD were common. Collectively, our data show that RES and DIM differentially regulate multiple transcriptomic targets via ERα and ERα/AHR coactivity, respectively, which need to be considered to properly interpret their cellular and biological responses. These novel data also suggest that, when both receptors are activated, ERα dominates with preferential recruitment of AHR to ERα target genes.


Subject(s)
Breast Neoplasms , Polychlorinated Dibenzodioxins , Humans , Female , Receptors, Aryl Hydrocarbon/metabolism , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Resveratrol/pharmacology , MCF-7 Cells , Transcriptome , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Signal Transduction , Polychlorinated Dibenzodioxins/pharmacology , Estradiol/pharmacology , Estradiol/metabolism
10.
BMC Pregnancy Childbirth ; 23(1): 695, 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37752466

ABSTRACT

BACKGROUND: Women with pre-pregnancy obesity have an increased risk of retaining or gaining weight postpartum and may benefit from weight loss treatment. However, evidence is lacking for weight loss strategies in women with BMIs in the higher obesity classes. A dietary treatment for postpartum weight loss resulted in a 10% weight reduction in lactating women with a mean BMI of 30 kg/m2. We aimed to examine the effects of this dietary treatment on changes in weight, markers of lipid and glucose metabolism, waist and hip circumference and postpartum weight retention (PPWR) in postpartum women with higher BMIs than tested previously. METHODS: At baseline, approximately 8 weeks postpartum, 29 women with a mean (SD) BMI = 40.0 (5.2) kg/m2 were randomised to a 12-week dietary treatment (n 14) or to a control treatment (n 15). Measurements were made at baseline and after 3 and 12 months. Data was analysed using mixed model. RESULTS: The mean weight change in the diet group was -2.3 (3.1) kg compared to 1.7 (3.1) kg in the control group after 3 months (P = 0.003) and -4.2 (5.6) kg compared to 4.8 (11.8) kg in the control group after 12 months (P = 0.02). The dietary treatment led to reduced waist circumference (P < 0.04) and PPWR (P < 0.01) compared to the control treatment at both time points. The treatment lowered fasting blood glucose at 12 months (P = 0.007) as the only effect on markers of lipid and glucose metabolism. CONCLUSION: The dietary treatment postpartum reduced weight and prevented weight retention or weight gain in women with obesity. TRIAL REGISTRATION: The trial was retrospectively registered at ClinicalTrials.gov (NCT03579667) 06/07/2018. In a randomised, controlled trial, 29 postpartum women with obesity were allocated to a dietary treatment or a control treatment. The dietary treatment reduced weight and prevented postpartum weight retention or weight gain after 12 months. Reference: Adapted from "Randomized, Placebo-Controlled, Parallel Study Design (2 Arms, Graphical)", by BioRender.com (2022). Retrieved from https://app.biorender.com/biorender-templates .


Subject(s)
Gestational Weight Gain , Pregnancy , Female , Humans , Lactation , Obesity/therapy , Weight Gain , Diet , Postpartum Period , Weight Loss , Glucose , Lipids
11.
J Pediatr Urol ; 19(5): 653.e1-653.e7, 2023 10.
Article in English | MEDLINE | ID: mdl-37544787

ABSTRACT

INTRODUCTION: Acute scrotum is a common presentation in the pediatric population and can indicate serious conditions such as testicular torsion, in which quick diagnosis and treatment is crucial for increasing the chances of a favorable outcome. During the COVID-19 pandemic, even patients with serious conditions, had delayed presentations and in-hospital management, resulting in worse outcomes. OBJECTIVE: The aim of the study was to evaluate the safety of ultrasound in diagnosing pediatric acute scrotum and to identify delays from onset of symptoms until surgical exploration. Additionally, we wanted to gauge the impact of COVID-19 pandemic on delay and outcome. METHODS: Medical records of patients aged 1-16 years seen with acute scrotum at the authors' University Hospital from 2017 to 2020 were reviewed, and 438 patients in 467 individual visits were included. Information on demographics, symptoms, ultrasound results, outcome, and time courses were retrieved and analyzed with regards to outcome and the presence COVID-19. RESULTS: We did not find the use of ultrasound to increase the risk of orchiectomy (OR 2.259 (0.387-13.195)), however patients undergoing ultrasound had a significantly longer pre-hospital ischemia time, and therefore an increased orchiectomy rate. Delay between referral and presentation was the greatest predictor of orchiectomy in testicular torsion (OR 1.031 (1.003-1.060)), while in-hospital delay did not increase the risk of orchiectomy (OR 0.998 (0.992-1.004)). Time courses and outcome did not significantly differ before- and during the COVID-19 pandemic. DISCUSSION: The primary contributor to ischemic time in testicular torsion was pre-hospital delay, and neither in-hospital delay nor the delay incurred by use of ultrasound affected the outcome. This might be explained by timely in-hospital management and ultrasound only being used selectively in patients with a lower clinical suspicion of testicular torsion and in those with prolonged symptom duration. During the COVID-19 pandemic, pre- and in-hospital delay as well as outcome did not differ significantly from pre-pandemic measures, which indicates that parents felt safe approaching the healthcare system, and resources were sufficient to handle this patient group in spite of an ongoing pandemic. The current study is limited by its retrospective design, and relatively small group of testicular torsion patients. CONCLUSION: We found ultrasound to be safe in diagnosing pediatric acute scrotum. Furthermore, it can be inferred that measures aimed at reducing pre-hospital delay could potentially increase the salvage rate in testicular torsion. We did not find COVID-19 to affect either outcome or time to treatment in testicular torsion.


Subject(s)
COVID-19 , Spermatic Cord Torsion , Male , Child , Humans , Scrotum/diagnostic imaging , Spermatic Cord Torsion/diagnostic imaging , Spermatic Cord Torsion/surgery , Pandemics , Retrospective Studies , Orchiectomy , COVID-19 Testing
12.
bioRxiv ; 2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37398033

ABSTRACT

Muscular atrophy is a mortality risk factor that happens with disuse, chronic disease, and aging. Recovery from atrophy requires changes in several cell types including muscle fibers, and satellite and immune cells. Here we show that Zfp697/ZNF697 is a damage-induced regulator of muscle regeneration, during which its expression is transiently elevated. Conversely, sustained Zfp697 expression in mouse muscle leads to a gene expression signature of chemokine secretion, immune cell recruitment, and extracellular matrix remodeling. Myofiber-specific Zfp697 ablation hinders the inflammatory and regenerative response to muscle injury, compromising functional recovery. We uncover Zfp697 as an essential interferon gamma mediator in muscle cells, interacting primarily with ncRNAs such as the pro-regenerative miR-206. In sum, we identify Zfp697 as an integrator of cell-cell communication necessary for tissue regeneration.

13.
Cancer Res ; 83(20): 3340-3353, 2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37477923

ABSTRACT

Circular RNAs (circRNA) are covalently closed molecules that can play important roles in cancer development and progression. Hundreds of differentially expressed circRNAs between tumors and adjacent normal tissues have been identified in studies using RNA sequencing or microarrays, emphasizing a strong translational potential. Most previous studies have been performed using RNA from bulk tissues and lack information on the spatial expression patterns of circRNAs. Here, we showed that the majority of differentially expressed circRNAs from bulk tissue analyses of colon tumors relative to adjacent normal tissues were surprisingly not differentially expressed when comparing cancer cells directly with normal epithelial cells. Manipulating the proliferation rates of cells grown in culture revealed that these discrepancies were explained by circRNAs accumulating to high levels in quiescent muscle cells due to their high stability; on the contrary, circRNAs were diluted to low levels in the fast-proliferating cancer cells due to their slow biogenesis rates. Thus, different subcompartments of colon tumors and adjacent normal tissues exhibited striking differences in circRNA expression patterns. Likewise, the high circRNA content in muscle cells was also a strong confounding factor in bulk analyses of circRNAs in bladder and prostate cancers. Together, these findings emphasize the limitations of using bulk tissues for studying differential circRNA expression in cancer and highlight a particular need for spatial analysis in this field of research. SIGNIFICANCE: The abundance of circRNAs varies systematically between subcompartments of solid tumors and adjacent tissues, implying that differentially expressed circRNAs discovered in bulk tissue analyses may reflect differences in cell type composition between samples.

14.
Geroscience ; 45(6): 3175-3186, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37204640

ABSTRACT

Increasing age is accompanied by many changes, including declining functional skeletal muscle health and immune dysfunction. Peripheral blood mononuclear cells (PBMCs) are circulating cells that assemble an immune response, but their whole genome transcriptome has not been studied in the context of age-related muscle health. Consequently, this article explored associations between three muscle variables indicative of functional muscle health - maximum handgrip strength (muscle strength), appendicular skeletal muscle mass index (ASMI, muscle mass), and gait speed (physical performance) - and two groups of bioinformatics-generated PBMC gene expression features (gene expression-estimated leukocyte subset proportions and gene clusters). We analyzed cross-sectional data from 95 home-dwelling healthy women ≥ 70 years, using "cell-type identification by estimating relative subsets of RNA transcripts" (CIBERSORT) to estimate leukocyte subset proportions and "weighted correlation network analysis" (WGCNA) to generate gene clusters. Associations were studied using linear regression models and relevant gene clusters were subjected to gene set enrichment analysis using gene ontology. Gait speed and ASMI associated with CIBERSORT-estimated monocyte proportions (ß = - 0.090, 95% CI = (- 0.146, - 0.034), p-value = 0.002 for gait speed, and ß = - 0.206, 95% CI = (- 0.385, - 0.028), p-value = 0.024 for ASMI), and gait speed associated with CIBERSORT-estimated M2 macrophage proportions (ß = - 0.026, 95% CI = (- 0.043, - 0.008), p-value = 0.004). Furthermore, maximum handgrip strength associated with nine WGCNA gene clusters, enriched in processes related to immune function and skeletal muscle cells (ß in the range - 0.007 to 0.008, p-values < 0.05). These results illustrate interactions between skeletal muscle and the immune system, supporting the notion that age-related functional muscle health and the immune system are closely linked.


Subject(s)
Hand Strength , Leukocytes, Mononuclear , Humans , Female , Aged , Hand Strength/physiology , Transcriptome , Cross-Sectional Studies , Muscle Strength , Muscle, Skeletal , Physical Functional Performance
15.
Redox Biol ; 63: 102730, 2023 07.
Article in English | MEDLINE | ID: mdl-37150150

ABSTRACT

Cardiovascular disease (CVD) is a leading cause of death worldwide. Supplementation with the marine omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) is associated with lower CVD risk. However, results from randomized controlled trials that examine the effect of omega-3 supplementation on CVD risk are inconsistent. This risk-reducing effect may be mediated by reducing inflammation, oxidative stress and serum triglyceride (TG) levels. However, not all individuals respond by reducing TG levels after omega-3 supplementation. This inter-individual variability in TG response to omega-3 supplementation is not fully understood. Hence, we aim to review the evidence for how interactions between omega-3 fatty acid supplementation and genetic variants, epigenetic and gene expression profiling, gut microbiota and habitual intake of omega-3 fatty acids can explain why the TG response differs between individuals. This may contribute to understanding the current controversies and play a role in defining future personalized guidelines to prevent CVD.


Subject(s)
Cardiovascular Diseases , Fatty Acids, Omega-3 , Humans , Triglycerides , Eicosapentaenoic Acid/metabolism , Docosahexaenoic Acids , Cardiovascular Diseases/prevention & control , Dietary Supplements
16.
Genes Nutr ; 18(1): 3, 2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36899329

ABSTRACT

BACKGROUND: Metabotyping is a novel concept to group metabolically similar individuals. Different metabotypes may respond differently to dietary interventions; hence, metabotyping may become an important future tool in precision nutrition strategies. However, it is not known if metabotyping based on comprehensive omic data provides more useful identification of metabotypes compared to metabotyping based on only a few clinically relevant metabolites. AIM: This study aimed to investigate if associations between habitual dietary intake and glucose tolerance depend on metabotypes identified from standard clinical variables or comprehensive nuclear magnetic resonance (NMR) metabolomics. METHODS: We used cross-sectional data from participants recruited through advertisements aimed at people at risk of type 2 diabetes mellitus (n = 203). Glucose tolerance was assessed with a 2-h oral glucose tolerance test (OGTT), and habitual dietary intake was recorded with a food frequency questionnaire. Lipoprotein subclasses and various metabolites were quantified with NMR spectroscopy, and plasma carotenoids were quantified using high-performance liquid chromatography. We divided participants into favorable and unfavorable clinical metabotypes based on established cutoffs for HbA1c and fasting and 2-h OGTT glucose. Favorable and unfavorable NMR metabotypes were created using k-means clustering of NMR metabolites. RESULTS: While the clinical metabotypes were separated by glycemic variables, the NMR metabotypes were mainly separated by variables related to lipoproteins. A high intake of vegetables was associated with a better glucose tolerance in the unfavorable, but not the favorable clinical metabotype (interaction, p = 0.01). This interaction was confirmed using plasma concentrations of lutein and zeaxanthin, objective biomarkers of vegetable intake. Although non-significantly, the association between glucose tolerance and fiber intake depended on the clinical metabotypes, while the association between glucose tolerance and intake of saturated fatty acids and dietary fat sources depended on the NMR metabotypes. CONCLUSION: Metabotyping may be a useful tool to tailor dietary interventions that will benefit specific groups of individuals. The variables that are used to create metabotypes will affect the association between dietary intake and disease risk.

17.
BMC Med ; 21(1): 43, 2023 02 06.
Article in English | MEDLINE | ID: mdl-36747215

ABSTRACT

BACKGROUND: Numerous intrauterine factors may affect the offspring's growth during childhood. We aimed to explore if maternal and paternal prenatal lipid, apolipoprotein (apo)B and apoA1 levels are associated with offspring weight, length, and body mass index from 6 weeks to eight years of age. This has previously been studied to a limited extent. METHODS: This parental negative control study is based on the Norwegian Mother, Father and Child Cohort Study and uses data from the Medical Birth Registry of Norway. We included 713 mothers and fathers with or without self-reported hypercholesterolemia and their offspring. Seven parental metabolites were measured by nuclear magnetic resonance spectroscopy, and offspring weight and length were measured at 12 time points. Data were analyzed by linear spline mixed models, and the results are presented as the interaction between parental metabolite levels and offspring spline (age). RESULTS: Higher maternal total cholesterol (TC) level was associated with a larger increase in offspring body weight up to 8 years of age (0.03 ≤ Pinteraction ≤ 0.04). Paternal TC level was not associated with change in offspring body weight (0.17 ≤ Pinteraction ≤ 0.25). Higher maternal high-density lipoprotein cholesterol (HDL-C) and apoA1 levels were associated with a lower increase in offspring body weight up to 8 years of age (0.001 ≤ Pinteraction ≤ 0.005). Higher paternal HDL-C and apoA1 levels were associated with a lower increase in offspring body weight up to 5 years of age but a larger increase in offspring body weight from 5 to 8 years of age (0.01 ≤ Pinteraction ≤ 0.03). Parental metabolites were not associated with change in offspring height or body mass index up to 8 years of age (0.07 ≤ Pinteraction ≤ 0.99). CONCLUSIONS: Maternal compared to paternal TC, HDL-C, and apoA1 levels were more strongly and consistently associated with offspring body weight during childhood, supporting a direct intrauterine effect.


Subject(s)
Body-Weight Trajectory , Mothers , Male , Female , Pregnancy , Humans , Child , Child, Preschool , Cohort Studies , Fathers , Body Mass Index , Cholesterol, HDL
18.
Nutrients ; 14(23)2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36501195

ABSTRACT

Food protein or food-derived peptides may regulate blood glucose levels; however, studies have shown inconsistent results. The aim of the present study was to characterize subgroups of individuals with increased risk of type 2 diabetes (T2D) and to investigate the cardiometabolic effects of fish protein in the same subgroups. We first divided participants into high insuliniAUC and low insuliniAUC subjects based on their insulin incremental area under the curve (iAUC) levels after a 2 h oral glucose tolerance test (OGTT), and secondly based on whether they had received 5.2 g salmon fish protein or placebo for 8 weeks, in a previously conducted randomized controlled trial (RCT). We then profiled these groups by analyzing plasma metabolomics and peripheral blood mononuclear cell (PBMC) gene expression. Compared to the low insuliniAUC group, the high insuliniAUC group had higher plasma concentrations of monounsaturated fatty acids (MUFAs) and glycated proteins (GlycA) and lower concentrations of glycine and acetate. After intervention with fish protein compared to placebo, however, only acetate was significantly increased in the low insuliniAUC group. In conclusion, we identified metabolic biomarkers known to be associated with T2D; also, intervention with fish protein did not affect cardiometabolic risk markers in subgroups with increased risk of T2D.


Subject(s)
Diabetes Mellitus, Type 2 , Fatty Acids, Monounsaturated , Animals , Glycated Proteins , Blood Glucose/metabolism , Glycine , Biomarkers , Insulin , Acetates , Fish Proteins
19.
BMJ ; 378: e071245, 2022 09 07.
Article in English | MEDLINE | ID: mdl-36215222

ABSTRACT

OBJECTIVE: To determine if daily supplementation with cod liver oil, a low dose vitamin D supplement, in winter, prevents SARS-CoV-2 infection, serious covid-19, or other acute respiratory infections in adults in Norway. DESIGN: Quadruple blinded, randomised placebo controlled trial. SETTING: Norway, 10 November 2020 to 2 June 2021. PARTICIPANTS: 34 601 adults (aged 18-75 years), not taking daily vitamin D supplements. INTERVENTION: 5 mL/day of cod liver oil (10 µg of vitamin D, n=17 278) or placebo (n=17 323) for up to six months. MAIN OUTCOME MEASURES: Four co-primary endpoints were predefined: the first was a positive SARS-CoV-2 test result determined by reverse transcriptase-quantitative polymerase chain reaction and the second was serious covid-19, defined as self-reported dyspnoea, admission to hospital, or death. Other acute respiratory infections were indicated by the third and fourth co-primary endpoints: a negative SARS-CoV-2 test result and self-reported symptoms. Side effects related to the supplementation were self-reported. The fallback method was used to handle multiple comparisons. RESULTS: Supplementation with cod liver oil was not associated with a reduced risk of any of the co-primary endpoints. Participants took the supplement (cod liver oil or placebo) for a median of 164 days, and 227 (1.31%) participants in the cod liver oil group and 228 (1.32%) participants in the placebo group had a positive SARS-CoV-2 test result (relative risk 1.00, multiple comparison adjusted confidence interval 0.82 to 1.22). Serious covid-19 was identified in 121 (0.70%) participants in the cod liver oil group and in 101 (0.58%) participants in the placebo group (1.20, 0.87 to 1.65). 8546 (49.46%) and 8565 (49.44%) participants in the cod liver oil and placebo groups, respectively, had ≥1 negative SARS-CoV-2 test results (1.00, 0.97 to 1.04). 3964 (22.94%) and 3834 (22.13%) participants in the cod liver oil and placebo groups, respectively, reported ≥1 acute respiratory infections (1.04, 0.97 to 1.11). Only low grade side effects were reported in the cod liver oil and placebo groups. CONCLUSION: Supplementation with cod liver oil in the winter did not reduce the incidence of SARS-CoV-2 infection, serious covid-19, or other acute respiratory infections compared with placebo. TRIAL REGISTRATION: ClinicalTrials.gov NCT04609423.


Subject(s)
COVID-19 , Cod Liver Oil , Dietary Supplements , Vitamin D , Adult , COVID-19/prevention & control , Cod Liver Oil/therapeutic use , Humans , SARS-CoV-2 , Vitamin D/therapeutic use
20.
Lipids Health Dis ; 21(1): 92, 2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36163070

ABSTRACT

BACKGROUND: Improving dietary fat quality strongly affects serum cholesterol levels and hence the risk of cardiovascular diseases (CVDs). Recent studies have identified dietary fat as a potential modulator of the gut microbiota, a central regulator of host metabolism including lipid metabolism. We have previously shown a significant reduction in total cholesterol levels after replacing saturated fatty acids (SFAs) with polyunsaturated fatty acids (PUFAs). The aim of the present study was to investigate the effect of dietary fat quality on gut microbiota, short-chain fatty acids (SCFAs), and bile acids in healthy individuals. In addition, to investigate how changes in gut microbiota correlate with blood lipids, bile acids, and fatty acids. METHODS: Seventeen participants completed a randomized, controlled dietary crossover study. The participants received products with SFAs (control) or PUFAs in random order for three days. Fecal samples for gut microbiota analyses and fasting blood samples (lipids, fatty acids, and bile acids) were measured before and after the three-day intervention. RESULTS: Of a panel of 40 bacteria, Lachnospiraceae and Bifidobacterium spp. were significantly increased after intervention with PUFAs compared with SFAs. Interestingly, changes in Lachnospiraceae, as well as Phascolarlactobacterium sp. and Eubacterium hallii, was also found to be negatively correlated with changes in total cholesterol levels after replacing the intake of SFAs with PUFAs for three days. No significant differences in SCFAs or bile acids were found after the intervention. CONCLUSION: Replacing SFAs with PUFAs increased the abundance of the gut microbiota family of Lachnospiraceae and Bifidobacterium spp. Furthermore, the reduction in total cholesterol after improving dietary fat quality correlated with changes in the gut microbiota family Lachnospiraceae. Future studies are needed to reveal whether Lachnospiraceae may be targeted to reduce total cholesterol levels. TRIAL REGISTRATION: The study was registered at Clinical Trials ( https://clinicaltrials.gov/ , registration identification number: NCT03658681).


Subject(s)
Fatty Acids, Unsaturated , Fatty Acids , Bile Acids and Salts , Cholesterol , Cross-Over Studies , Dietary Fats , Humans , Lipids
SELECTION OF CITATIONS
SEARCH DETAIL
...