Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Cell ; 27(10): 2991-3012, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26452600

ABSTRACT

In cereals, several mildew resistance genes occur as large allelic series; for example, in wheat (Triticum aestivum and Triticum turgidum), 17 functional Pm3 alleles confer agronomically important race-specific resistance to powdery mildew (Blumeria graminis). The molecular basis of race specificity has been characterized in wheat, but little is known about the corresponding avirulence genes in powdery mildew. Here, we dissected the genetics of avirulence for six Pm3 alleles and found that three major Avr loci affect avirulence, with a common locus_1 involved in all AvrPm3-Pm3 interactions. We cloned the effector gene AvrPm3(a2/f2) from locus_2, which is recognized by the Pm3a and Pm3f alleles. Induction of a Pm3 allele-dependent hypersensitive response in transient assays in Nicotiana benthamiana and in wheat demonstrated specificity. Gene expression analysis of Bcg1 (encoded by locus_1) and AvrPm3 (a2/f2) revealed significant differences between isolates, indicating that in addition to protein polymorphisms, expression levels play a role in avirulence. We propose a model for race specificity involving three components: an allele-specific avirulence effector, a resistance gene allele, and a pathogen-encoded suppressor of avirulence. Thus, whereas a genetically simple allelic series controls specificity in the plant host, recognition on the pathogen side is more complex, allowing flexible evolutionary responses and adaptation to resistance genes.


Subject(s)
Ascomycota/pathogenicity , Disease Resistance/genetics , Plant Diseases/immunology , Triticum/genetics , Alleles , Amino Acid Sequence , Crosses, Genetic , Evolution, Molecular , Gene Expression , Models, Genetic , Molecular Sequence Annotation , Plant Diseases/microbiology , Plant Leaves/genetics , Plant Leaves/immunology , Plant Leaves/microbiology , Plant Proteins/genetics , Plant Proteins/metabolism , Polymorphism, Genetic , Sequence Alignment , Sequence Analysis, DNA , Species Specificity , Nicotiana/genetics , Nicotiana/immunology , Nicotiana/microbiology , Triticum/immunology , Triticum/microbiology , Virulence
2.
Fungal Genet Biol ; 82: 181-92, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26165518

ABSTRACT

Wheat powdery mildew is caused by the obligate biotrophic fungus Blumeria graminis f. sp. tritici. The allelic series of the wheat Pm3 gene conferring race-specific resistance against powdery mildew has been well characterized functionally, and recently the corresponding avirulence gene AvrPm3a/f triggering the specific recognition by Pm3a and Pm3f alleles was cloned. Here, we describe the genetic and molecular analysis of two additional Blumeria loci involved in the resistance mediated by the Pm3c and Pm3f alleles. We genetically identified the two loci and mapped at high resolution one locus involved in the avirulence towards both Pm3c and Pm3f. The single candidate gene Bcg1 was identified in a physical target interval of 26kb defined by flanking genetic markers. Bcg1 encodes a small secreted protein sharing structural homology with ribonucleases and belongs to a family of clustered putative effector genes under diversifying selection. We found a very good, but not complete, correlation of Bcg1 haplotypes with the phenotypes of natural isolates. Two mutants were generated that were affected in their phenotypes towards Pm3a and Pm3f but did not show any sequence polymorphism in Bcg1. Our results suggest that avirulence to Pm3 in Blumeria is determined by a complex network of genes, in which Bcg1 might have a central role as a modifier of the Pm3/AvrPm3 interactions.


Subject(s)
Alleles , Ascomycota/genetics , Ascomycota/pathogenicity , Genetic Loci , Triticum/microbiology , Virulence/genetics , Amino Acid Motifs , Amino Acid Sequence , Ascomycota/classification , Chromosome Mapping , Cloning, Molecular , Crosses, Genetic , Gene Order , Gene Rearrangement , Genes, Fungal , Genotype , Molecular Sequence Data , Multigene Family , Mutation , Phenotype , Phylogeny , Plant Diseases/microbiology , Selection, Genetic , Sequence Alignment
3.
Theor Appl Genet ; 128(10): 2099-111, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26160336

ABSTRACT

KEY MESSAGE: A novel powdery mildew resistance gene and a new allele of Pm1 were identified and fine mapped. DNA markers suitable for marker-assisted selection have been identified. Powdery mildew caused by Blumeria graminis is one of the most important foliar diseases of wheat and causes significant yield losses worldwide. Diploid A genome species are an important genetic resource for disease resistance genes. Two powdery mildew resistance genes, identified in Triticum boeoticum (A(b)A(b)) accession pau5088, PmTb7A.1 and PmTb7A.2 were mapped on chromosome 7AL. In the present study, shotgun sequence assembly data for chromosome 7AL were utilised for fine mapping of these Pm resistance genes. Forty SSR, 73 resistance gene analogue-based sequence-tagged sites (RGA-STS) and 36 single nucleotide polymorphism markers were designed for fine mapping of PmTb7A.1 and PmTb7A.2. Twenty-one RGA-STS, 8 SSR and 13 SNP markers were mapped to 7AL. RGA-STS markers Ta7AL-4556232 and 7AL-4426363 were linked to the PmTb7A.1 and PmTb7A.2, at a genetic distance of 0.6 and 6.0 cM, respectively. The present investigation established that PmTb7A.1 is a new powdery mildew resistance gene that confers resistance to a broad range of Bgt isolates, whereas PmTb7A.2 most probably is a new allele of Pm1 based on chromosomal location and screening with Bgt isolates showing differential reaction on lines with different Pm1 alleles. The markers identified to be linked to the two Pm resistance genes are robust and can be used for marker-assisted introgression of these genes to hexaploid wheat.


Subject(s)
Ascomycota , Chromosome Mapping , Disease Resistance/genetics , Plant Diseases/genetics , Triticum/genetics , Alleles , Chromosomes, Plant , Diploidy , Genes, Plant , Genetic Linkage , Genetic Markers , Plant Breeding , Plant Diseases/microbiology , Polymorphism, Single Nucleotide , Sequence Tagged Sites , Triticum/classification , Triticum/microbiology
4.
Plant J ; 79(6): 893-903, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24942051

ABSTRACT

The development of high-yielding varieties with broad-spectrum durable disease resistance is the ultimate goal of crop breeding. In plants, immune receptors of the nucleotide-binding-leucine-rich repeat (NB-LRR) class mediate race-specific resistance against pathogen attack. When employed in agriculture this type of resistance is often rapidly overcome by newly adapted pathogen races. The stacking of different resistance genes or alleles in F1 hybrids or in pyramided lines is a promising strategy for achieving more durable resistance. Here, we identify a molecular mechanism which can negatively interfere with the allele-pyramiding approach. We show that pairwise combinations of different alleles of the powdery mildew resistance gene Pm3 in F1 hybrids and stacked transgenic wheat lines can result in suppression of Pm3-based resistance. This effect is independent of the genetic background and solely dependent on the Pm3 alleles. Suppression occurs at the post-translational level, as levels of RNA and protein in the suppressed alleles are unaffected. Using a transient expression system in Nicotiana benthamiana, the LRR domain was identified as the domain conferring suppression. The results of this study suggest that the expression of closely related NB-LRR resistance genes or alleles in the same genotype can lead to dominant-negative interactions. These findings provide a molecular explanation for the frequently observed ineffectiveness of resistance genes introduced from the secondary gene pool into polyploid crop species and mark an important step in overcoming this limitation.


Subject(s)
Ascomycota/physiology , Disease Resistance , Plant Diseases/immunology , Plant Proteins/genetics , Proteins/genetics , Triticum/immunology , Alleles , Chimera , Crops, Agricultural , Gene Expression , Leucine , Leucine-Rich Repeat Proteins , Plant Diseases/microbiology , Plant Leaves/genetics , Plant Leaves/immunology , Plant Leaves/microbiology , Plant Proteins/metabolism , Plants, Genetically Modified , Polyploidy , Proteins/metabolism , Nicotiana/genetics , Nicotiana/immunology , Nicotiana/microbiology , Triticum/genetics , Triticum/microbiology
5.
Plant J ; 79(6): 904-13, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24942074

ABSTRACT

The powdery mildew resistance gene Pm8 derived from rye is located on a 1BL.1RS chromosome translocation in wheat. However, some wheat lines with this translocation do not show resistance to isolates of the wheat powdery mildew pathogen avirulent to Pm8 due to an unknown genetically dominant suppression mechanism. Here we show that lines with suppressed Pm8 activity contain an intact and expressed Pm8 gene. Therefore, the absence of Pm8 function in certain 1BL.1RS-containing wheat lines is not the result of gene loss or mutation but is based on suppression. The wheat gene Pm3, an ortholog of rye Pm8, suppressed Pm8-mediated powdery mildew resistance in lines containing Pm8 in a transient single-cell expression assay. This result was further confirmed in transgenic lines with combined Pm8 and Pm3 transgenes. Expression analysis revealed that suppression is not the result of gene silencing, either in wheat 1BL.1RS translocation lines carrying Pm8 or in transgenic genotypes with both Pm8 and Pm3 alleles. In addition, a similar abundance of the PM8 and PM3 proteins in single or double homozygous transgenic lines suggested that a post-translational mechanism is involved in suppression of Pm8. Co-expression of Pm8 and Pm3 genes in Nicotiana benthamiana leaves followed by co-immunoprecipitation analysis showed that the two proteins interact. Therefore, the formation of a heteromeric protein complex might result in inefficient or absent signal transmission for the defense reaction. These data provide a molecular explanation for the suppression of resistance genes in certain genetic backgrounds and suggest ways to circumvent it in future plant breeding.


Subject(s)
Ascomycota/physiology , Disease Resistance , Plant Diseases/immunology , Plant Proteins/genetics , Secale/genetics , Triticum/genetics , Alleles , Ascomycota/pathogenicity , Dimerization , Gene Expression , Genes, Reporter , Genotype , Immunoprecipitation , Inbreeding , Molecular Sequence Data , Plant Diseases/microbiology , Plant Leaves/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Protein Interaction Mapping , Protein Processing, Post-Translational , Nicotiana/genetics , Nicotiana/immunology , Nicotiana/microbiology , Transgenes , Translocation, Genetic , Triticum/microbiology
6.
Mol Plant Microbe Interact ; 27(3): 265-76, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24329172

ABSTRACT

Proteins with nucleotide-binding site (NBS) and leucine-rich repeat (LRR) domains are major components of the plant immune system. They usually mediate resistance against a subgroup of races of a specific pathogen. For the allelic series of the wheat powdery mildew resistance gene Pm3, alleles with a broad and a narrow resistance spectrum have been described. Here, we show that a broad Pm3 spectrum range correlates with a fast and intense hypersensitive response (HR) in a Nicotiana transient-expression system and this activity can be attributed to two particular amino acids in the ARC2 subdomain of the NBS. The combined substitution of these amino acids in narrow-spectrum PM3 proteins enhances their capacity to induce an HR in Nicotiana benthamiana, and we demonstrate that these substitutions also enlarge the resistance spectrum of the Pm3f allele in wheat. Finally, using Bph14, we show that the region carrying the relevant amino acids also plays a role in the HR regulation of another coiled-coil NBS-LRR resistance protein. These results highlight the importance of an optimized NBS-'molecular switch' for the conversion of initial pathogen perception by the LRR into resistance-protein activation, and we describe a possible approach to extend the effectiveness of resistance genes via minimal targeted modifications in the NBS domain.


Subject(s)
Ascomycota/pathogenicity , Disease Resistance , Plant Diseases/immunology , Plant Proteins/genetics , Triticum/genetics , Alleles , Amino Acid Sequence , Amino Acid Substitution , Binding Sites , Haplotypes , Plant Diseases/microbiology , Plant Leaves , Protein Structure, Tertiary , Nicotiana/genetics , Triticum/immunology , Triticum/microbiology
7.
Theor Appl Genet ; 124(6): 1051-8, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22198205

ABSTRACT

Powdery mildew (PM) caused by Blumeria graminis f. sp. tritici (Bgt), is one of the important foliar diseases of wheat that can cause serious yield losses. Breeding for cultivars with diverse resources of resistance is the most promising approach for combating this disease. The diploid A genome progenitor species of wheat are an important resource for new variability for disease resistance genes. An accession of Triticum boeoticum (A(b)A(b)) showed resistance against a number of Bgt isolates, when tested using detached leaf segments. Inheritance studies in a recombinant inbred line population (RIL), developed from crosses of PM resistant T. boeoticum acc. pau5088 with a PM susceptible T. monococcum acc. pau14087, indicated the presence of two powdery mildew resistance genes in T. boeoticum acc. pau5088. Analysis of powdery mildew infection and molecular marker data of the RIL population revealed that both powdery mildew resistance genes are located on the long arm of chromosome 7A. Mapping was conducted using an integrated linkage map of 7A consisting of SSR, RFLP, STS, and DArT markers. These powdery mildew resistance genes are tentatively designated as PmTb7A.1 and PmTb7A.2. The PmTb7A.2 is closely linked to STS markers MAG2185 and MAG1759 derived from RFLP probes which are linked to powdery mildew resistance gene Pm1. This indicated that PmTb7A.2 might be allelic to Pm1. The PmTb7A.1, flanked by a DArT marker wPt4553 and an SSR marker Xcfa2019 in a 4.3 cM interval, maps proximal to PmT7A.2. PmTb7A.1 is putatively a new powdery mildew resistance gene. The powdery mildew resistance genes from T. boeoticum are currently being transferred to cultivated wheat background through marker-assisted backcrossing, using T. durum as bridging species.


Subject(s)
Ascomycota/pathogenicity , Chromosome Mapping/methods , Plant Diseases/genetics , Triticum/genetics , Alleles , Ascomycota/growth & development , Chromosomes, Plant/genetics , Crosses, Genetic , Diploidy , Disease Resistance , Expressed Sequence Tags , Genes, Plant , Genetic Linkage , Genotype , Phenotype , Plant Diseases/immunology , Plant Diseases/microbiology , Triticum/immunology , Triticum/microbiology
8.
Plant Biotechnol J ; 10(4): 398-409, 2012 May.
Article in English | MEDLINE | ID: mdl-22176579

ABSTRACT

Resistance (R) genes protect plants very effectively from disease, but many of them are rapidly overcome when present in widely grown cultivars. To overcome this lack of durability, strategies that increase host resistance diversity have been proposed. Among them is the use of multilines composed of near-isogenic lines (NILs) containing different disease resistance genes. In contrast to classical R-gene introgression by recurrent backcrossing, a transgenic approach allows the development of lines with identical genetic background, differing only in a single R gene. We have used alleles of the resistance locus Pm3 in wheat, conferring race-specific resistance to wheat powdery mildew (Blumeria graminis f. sp. tritici), to develop transgenic wheat lines overexpressing Pm3a, Pm3c, Pm3d, Pm3f or Pm3g. In field experiments, all tested transgenic lines were significantly more resistant than their respective nontransformed sister lines. The resistance level of the transgenic Pm3 lines was determined mainly by the frequency of virulence to the particular Pm3 allele in the powdery mildew population, Pm3 expression levels and most likely also allele-specific properties. We created six two-way multilines by mixing seeds of the parental line Bobwhite and transgenic Pm3a, Pm3b and Pm3d lines. The Pm3 multilines were more resistant than their components when tested in the field. This demonstrates that the difference in a single R gene is sufficient to cause host-diversity effects and that multilines of transgenic Pm3 wheat lines represent a promising strategy for an effective and sustainable use of Pm3 alleles.


Subject(s)
Ascomycota/physiology , Genes, Plant/genetics , Plant Diseases/genetics , Plant Diseases/microbiology , Plant Immunity/genetics , Triticum/genetics , Triticum/microbiology , Alleles , Ascomycota/genetics , Ascomycota/pathogenicity , Gene Expression Regulation, Plant , Plant Diseases/immunology , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Transgenes/genetics , Triticum/growth & development , Triticum/immunology , Virulence/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...