Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 873: 162326, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36842572

ABSTRACT

Lake Urmia, located in northwest Iran, was among the world's largest hypersaline lakes but has now experienced a 7 m decrease in water level, from 1278 m to 1271 over 1996 to 2019. There is doubt as to whether the pixel-based analysis (PBA) approach's answer to the lake's drying is a natural process or a result of human intervention. Here, a non-parametric Mann-Kendall trend test was applied to a 21-year record (2000-2020) of satellite data products, i.e., temperature, precipitation, snow cover, and irrigated vegetation cover (IVC). The Google Earth Engine (GEE) cloud-computing platform utilized over 10 sub-basins in three provinces surrounding Lake Urmia to obtain and calculate pixel-based monthly and seasonal scales for the products. Canonical correlation analysis was employed in order to understand the correlation between variables and lake water level (LWL). The trend analysis results show significant increases in temperature (from 1 to 2 °C during 2000-2020) over May-September, i.e., in 87 %-25 % of the basin. However, precipitation has seen an insignificant decrease (from 3 to 9 mm during 2000-2019) in the rainy months (April and May). Snow cover has also decreased and, when compared with precipitation, shows a change in precipitation patterns from snow to rain. IVC has increased significantly in all sub-basins, especially the southern parts of the lake, with the West province making the largest contribution to the development of IVC. According to the PBA, this analysis underpins the very high contribution of IVC to the drying of the lake in more detail, although the contribution of climate change in this matter is also apparent. The development of IVC leads to increased water consumption through evapotranspiration and excess evaporation caused by the storage of water for irrigation. Due to the decreased runoff caused by consumption exceeding the basin's capacity, the lake cannot be fed sufficiently.

2.
Sci Total Environ ; 822: 153464, 2022 May 20.
Article in English | MEDLINE | ID: mdl-35093341

ABSTRACT

Groundwater recharge quantification is essential for sustainable groundwater resources management, but typically limited to local and regional scale estimates. A high-resolution (1 km × 1 km) dataset consisting of long-term average actual evapotranspiration, effective precipitation, a groundwater recharge coefficient, and the resulting groundwater recharge map has been created for all of Europe using a variety of pan-European and seven national gridded datasets. As an initial step, the approach developed for continental scale mapping consists of a merged estimate of actual evapotranspiration originating from satellite data and the vegetation controlled Budyko approach to subsequently estimate effective precipitation. Secondly, a machine learning model based on the Random Forest regressor was developed for mapping groundwater recharge coefficients, using a range of covariates related to geology, soil, topography and climate. A common feature of the approach is the validation and training against effective precipitation, recharge coefficients and groundwater recharge from seven national gridded datasets covering the UK, Ireland, Finland, Denmark, the Netherlands, France and Spain, representing a wide range of climatic and hydrogeological conditions across Europe. The groundwater recharge map provides harmonised high-resolution estimates across Europe and locally relevant estimates for areas where this information is otherwise not available, while being consistent with the existing national gridded datasets. The Pan-European groundwater recharge pattern compares well with results from the global hydrological model PCR-GLOBWB 2. At country scale, the results were compared to a German recharge map showing great similarity. The full dataset of long-term average actual evapotranspiration, effective precipitation, recharge coefficients and groundwater recharge is available through the EuroGeoSurveys' open access European Geological Data Infrastructure (EGDI).


Subject(s)
Groundwater , Geology , Hydrology , Machine Learning , Soil
3.
Ground Water ; 59(4): 503-516, 2021 07.
Article in English | MEDLINE | ID: mdl-33533499

ABSTRACT

Due to increasing water demands globally, freshwater ecosystems are under constant pressure. Groundwater resources, as the main source of accessible freshwater, are crucially important for irrigation worldwide. Over-abstraction of groundwater leads to declines in groundwater levels; consequently, the groundwater inflow to streams decreases. The reduction in baseflow and alteration of the streamflow regime can potentially have an adverse effect on groundwater-dependent ecosystems. A spatially distributed, coupled groundwater-surface water model can simulate the impacts of groundwater abstraction on aquatic ecosystems. A constrained optimization algorithm and a simulation model in combination can provide an objective tool for the water practitioner to evaluate the interplay between economic benefits of groundwater abstractions and requirements to environmental flow. In this study, a holistic catchment-scale groundwater abstraction optimization framework has been developed that allows for a spatially explicit optimization of groundwater abstraction, while fulfilling a predefined maximum allowed reduction of streamflow (baseflow [Q95] or median flow [Q50]) as constraint criteria for 1484 stream locations across the catchment. A balanced K-Means clustering method was implemented to reduce the computational burden of the optimization. The model parameters and observation uncertainties calculated based on Bayesian linear theory allow for a risk assessment on the optimized groundwater abstraction values. The results from different optimization scenarios indicated that using the linear programming optimization algorithm in conjunction with integrated models provides valuable information for guiding the water practitioners in designing an effective groundwater abstraction plan with the consideration of environmental flow criteria important for the ecological status of the entire system.


Subject(s)
Groundwater , Bayes Theorem , Ecosystem , Programming, Linear , Rivers , Water Supply
5.
PLoS One ; 12(5): e0178165, 2017.
Article in English | MEDLINE | ID: mdl-28558050

ABSTRACT

Citizen science opens new pathways that can complement traditional scientific practice. Intuition and reasoning often make humans more effective than computer algorithms in various realms of problem solving. In particular, a simple visual comparison of spatial patterns is a task where humans are often considered to be more reliable than computer algorithms. However, in practice, science still largely depends on computer based solutions, which inevitably gives benefits such as speed and the possibility to automatize processes. However, the human vision can be harnessed to evaluate the reliability of algorithms which are tailored to quantify similarity in spatial patterns. We established a citizen science project to employ the human perception to rate similarity and dissimilarity between simulated spatial patterns of several scenarios of a hydrological catchment model. In total, the turnout counts more than 2500 volunteers that provided over 43000 classifications of 1095 individual subjects. We investigate the capability of a set of advanced statistical performance metrics to mimic the human perception to distinguish between similarity and dissimilarity. Results suggest that more complex metrics are not necessarily better at emulating the human perception, but clearly provide auxiliary information that is valuable for model diagnostics. The metrics clearly differ in their ability to unambiguously distinguish between similar and dissimilar patterns which is regarded a key feature of a reliable metric. The obtained dataset can provide an insightful benchmark to the community to test novel spatial metrics.


Subject(s)
Computer Simulation , Hydrology , Algorithms
SELECTION OF CITATIONS
SEARCH DETAIL
...