Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 7: 46190, 2017 04 11.
Article in English | MEDLINE | ID: mdl-28397789

ABSTRACT

New engineered materials have critical applications in different fields in medicine, engineering and technology but their enhanced mechanical performances are significantly affected by the microstructural design and the sintering process used in their manufacture. This work introduces (i) a methodology for the calculation of the full deflection profile from video recordings of bending tests, (ii) an optimisation algorithm for the characterisation of Young's modulus, (iii) a quantification of the effects of optical distortions and (iv) a comparison with other standard tests. The results presented in this paper show the capabilities of this procedure to evaluate the Young's modulus of highly stiff materials with greater accuracy than previously possible with bending tests, by employing all the available information from the video recording of the tests. This methodology extends to this class of materials the possibility to evaluate both the elastic modulus and the tensile strength with a single mechanical test, without the need for other experimental tools.

2.
J Magn Reson ; 255: 122-31, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25965147

ABSTRACT

Conventional rheological characterisation using nuclear magnetic resonance (NMR) typically utilises spatially-resolved measurements of velocity. We propose a new approach to rheometry using pulsed field gradient (PFG) NMR which readily extends the application of MR rheometry to single-axis gradient hardware. The quantitative use of flow propagators in this application is challenging because of the introduction of artefacts during Fourier transform, which arise when realistic sampling strategies are limited by experimental and hardware constraints and when particular spatial and temporal resolution are required. The method outlined in this paper involves the cumulant analysis of the acquisition data directly, thereby preventing the introduction of artefacts and reducing data acquisition times. A model-dependent approach is developed to enable the pipe-flow characterisation of fluids demonstrating non-Newtonian power-law rheology, involving the use of an analytical expression describing the flow propagator in terms of the flow behaviour index. The sensitivity of this approach was investigated and found to be robust to the signal-to-noise ratio (SNR) and number of acquired data points, enabling an increase in temporal resolution defined by the SNR. Validation of the simulated results was provided by an experimental case study on shear-thinning aqueous xanthan gum solutions, whose rheology could be accurately characterised using a power-law model across the experimental shear rate range of 1-100 s(-1). The flow behaviour indices calculated using this approach were observed to be within 8% of those obtained using spatially-resolved velocity imaging and within 5% of conventional rheometry. Furthermore, it was shown that the number of points sampled could be reduced by a factor of 32, when compared to the acquisition of a volume-averaged flow propagator with 128 gradient increments, without negatively influencing the accuracy of the characterisation, reducing the acquisition time to only 3% of its original value.

3.
Int J Pharm ; 446(1-2): 46-58, 2013 Mar 25.
Article in English | MEDLINE | ID: mdl-23376506

ABSTRACT

The laboratory-scale Turbula mixer comprises a simple cylindrical vessel that moves with a complex, yet periodic 3D motion comprising of rotation, translation and inversion. Arising from this complexity, relatively few studies to obtain fundamental understanding of particle motion and mixing mechanisms have been reported. Particle motion within a cylindrical vessel of a Turbula mixer has been measured for 2mm glass spheres using Positron Emission Particle Tracking (PEPT) in a 2l blending mixing vessel at 50% fill level. These data are compared to results from Discrete Element Method (DEM) simulations previously published by the authors. PEPT mixing experiments, using a single particle tracer, gave qualitatively similar trends to the DEM predictions for axial and radial dispersion as well as for the axial displacement statistics at different operational speeds. Both experimental and simulation results indicate a minimum mixing efficiency at ca. 46 rpm. The occupancy plots also show a non-linear relationship with the operating speed. These results add further evidence to a transition between two flow and mixing regimes. Despite the similarity in overall flow and mixing behaviour measured and predicted, including the mixing speed at which the flow behaviour transition occurs, a systematic offset between measured and predicted result is observed.


Subject(s)
Drug Compounding/instrumentation , Powders/chemistry , Computer Simulation , Drug Compounding/methods , Electrons , Rotation
SELECTION OF CITATIONS
SEARCH DETAIL
...