Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Anaerobe ; 35(Pt B): 3-10, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26103451

ABSTRACT

The molecular diversity of rumen methanogens was investigated using 16S rDNA gene library prepared from the rumen contents of Nili-Ravi buffaloes. Microbial genomic DNA was isolated from four adult male fistulated buffaloes and PCR conditions were set up using specific primers. Amplified product was cloned into a suitable vector, and the inserts of positive clones were sequenced. A total of 142 clones were examined, and the analysis revealed 46 species level (0.01 distance) operational taxonomic units (OTUs). Twenty six OTUs comprising 89 clones (63% of the total clones) were taxonomically assigned to Methanobacterium genus and the majority of them had highest percent identity with Methanobacterium flexile among cultured methanogens. Five OTUs comprising 27 clones (19% of total clones) were taxonomically assigned to Methanomicrobium genus and these clones showed highest sequence identity with Methanomicrobium mobile. Only two OTUs comprising 6 clones (4% of total clones) were assigned to Methanobrevibacter genus. A total of 17 clones belonging to 10 species level OTUs showed highest percent identity (ranging from 85 to 95%) with Methanomassilicoccus luminyensis and were taxonomically classified as Methanomassiliicocaceae. Out of the 142 rDNA clones, 112 clones, which constitute 79% of the total clones representing 42 OTUs, had less than 98.5% sequence identity with any of the cultured strains of methanogens and represent novel species of methanogens. This study has revealed the largest assortment of hydrogenotrophic methanogen phylotypes ever identified from the rumen of Nili-Ravi buffaloes. The study indicates that Methanobacterium is the most dominant methanogen in the rumen of Nili-Ravi buffalo. This is also the first report on the presence of methanogens phylogenetically close to M. luminyensis, an H2 dependent methylotrophic methanogen, in the rumen of buffaloes at such a high level of abundance.


Subject(s)
Archaea/classification , Archaea/isolation & purification , Biota , Buffaloes/microbiology , Rumen/microbiology , Animals , Archaea/genetics , Cluster Analysis , DNA, Archaeal/chemistry , DNA, Archaeal/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Male , Molecular Sequence Data , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
2.
Appl Environ Microbiol ; 80(23): 7388-97, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25239906

ABSTRACT

The objective of this study was to systematically assess the bifidogenic effect of three commonly used prebiotic products using in vitro cultures of infant fecal samples. Fresh stool samples collected from six term infants, each exclusively fed human milk (n = 3) or infant formula (n = 3), at 28 days of age were used as inocula. The following prebiotic products were added at concentrations applicable to infant formula: Vivinal GOS 15 (containing 28.5% galacto-oligosaccharide [GOS]) at 7.2 g/liter, Beneo HP (99.5% long-chain inulin [IN]) at 0.8 g/liter, Beneo Synergy 1 (enriched oligofructose and inulin [OF-IN]) at 4 g/liter, and a combination of Vivinal GOS 15 (7.2 g/liter) and Beneo HP (0.8 g/liter) (GOS-IN). The growth of total bacteria, Bifidobacterium, Bacteroides, Bifidobacterium longum, and Escherichia coli was quantified using specific quantitative PCR (qPCR). Bifidobacterium was also enumerated on selective Beerens agar plates, with representative colonies identified by sequencing of their 16S rRNA genes. Volatile fatty acids (VFA) and pH in the cultures were also determined. Irrespective of the feeding methods, the GOS product, either alone or in combination with Beneo HP, resulted in substantially higher growth of total bifidobacteria, and much of this growth was attributed to growth of B. longum. Beneo Synergy 1 also increased the abundance of total bifidobacteria and B. longum. Corresponding to the increases in these two bacterial groups, acetic acid concentrations were higher, while there was a trend of lower E. coli levels and pH. The lower pH and higher acetic acid concentration might be directly responsible for the lower E. coli population. At the concentrations studied, the GOS product was more bifidogenic and potent in inhibiting E. coli than the other products tested. These results suggest that supplementation of infant formula with GOS may increase intestinal bifidobacteria and benefit infant health.


Subject(s)
Feces/microbiology , Gastrointestinal Microbiome/drug effects , Microbiota/drug effects , Oligosaccharides/metabolism , Prebiotics/administration & dosage , Bacterial Load , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Fatty Acids/analysis , Humans , Hydrogen-Ion Concentration , In Vitro Techniques , Infant , RNA, Ribosomal, 16S/genetics , Real-Time Polymerase Chain Reaction , Sequence Analysis, DNA
3.
J Appl Microbiol ; 113(6): 1329-40, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22925153

ABSTRACT

AIMS: The objective of this study was to comprehensively evaluate quillaja (QSP) and yucca saponin (YSP) products with respect to their effects on diversity of rumen bacteria and archaea, abundance of selected microbes, and feed degradability and fermentation. METHODS AND RESULTS: Both QSP and YSP at doses 0-0.6 g l(-1) tended to increase degradability of feed substrate in in vitro rumen cultures, but to different extents. Neither one of the saponins affected the concentrations of ammonia, total volatile fatty acids, or molar proportion of acetate. However, QSP increased molar proportion of propionate and decreased that of butyrate, whereas YSP tended to decrease that of butyrate. As determined by qPCR, QSP and YSP did not affect the abundance of total bacteria or Ruminococcus albus. The QSP did not affect the abundances of Fibrobacter succinogenes or genus Prevotella, but tended to decrease that of Ruminococcus flavefaciens, whereas YSP significantly increased the abundance of R. flavefaciens and Prevotella, and numerically increased that of F. succinogenes. Both saponins increased archaeal abundance, although to small magnitudes (0.3-0.4 log). The protozoal populations were decreased significantly by QSP, but not by YSP. Based on DGGE and T-RFLP analysis, both saponins altered the bacterial community and species organization, but less so the archaeal community. CONCLUSIONS: This study demonstrated that saponins, although not effective in mitigating methane emission, may improve feed utilization at low doses, and modulate ruminal microbial communities in a dose-dependent manner. SIGNIFICANCE AND IMPACT OF THE STUDY: The results of this study suggest that saponins at low doses may directly stimulate the growth of some rumen bacteria including cellulolytic bacteria, thus improving digestibility of feeds, independent of their defaunation activity. In contrast, saponins at high doses modulate rumen fermentation characteristically similar to defaunation.


Subject(s)
Archaea/drug effects , Bacteria/drug effects , Fermentation , Rumen/microbiology , Saponins/pharmacology , Ammonia/metabolism , Animal Feed , Animals , Biodiversity , Cattle , Fatty Acids, Volatile/analysis , Fatty Acids, Volatile/metabolism , Fibrobacter/drug effects , Methane/biosynthesis , Prevotella/drug effects , Quillaja/chemistry , Quillaja Saponins/pharmacology , Ruminococcus/drug effects , Yucca/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...