Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38746349

ABSTRACT

Histone deacetylases (HDACs) repress transcription by catalyzing the removal of acetyl groups from histones. Class 1 HDACs are activated by inositol phosphate signaling molecules in vitro , but it is unclear if this regulation occurs in human cells. Inositol Polyphosphate Multikinase (IPMK) is required for production of inositol hexakisphosphate (IP6), pentakisphosphate (IP5) and certain tetrakisphosphate (IP4) species, all known activators of Class 1 HDACs in vitro . Here, we generated IPMK knockout (IKO) human U251 glioblastoma cells, which decreased cellular inositol phosphate levels and increased histone H4-acetylation by mass spectrometry. ChIP-seq showed IKO increased H4-acetylation at IKO-upregulated genes, but H4-acetylation was unchanged at IKO-downregulated genes, suggesting gene-specific responses to IPMK knockout. HDAC deacetylase enzyme activity was decreased in HDAC3 immunoprecipitates from IKO vs . wild-type cells, while deacetylase activity of other Class 1 HDACs had no detectable changes in activity. Wild-type IPMK expression in IKO cells fully rescued HDAC3 deacetylase activity, while kinase-dead IPMK expression had no effect. Further, the deficiency in HDAC3 activity in immunoprecipitates from IKO cells could be fully rescued by addition of synthesized IP4 (Ins(1,4,5,6)P4) to the enzyme assay, while control inositol had no effect. These data suggest that cellular IPMK-dependent inositol phosphates are required for full HDAC3 enzyme activity and proper histone H4-acetylation. Implications for targeting IPMK in HDAC3-dependent diseases are discussed.

2.
Adv Biol Regul ; 91: 100991, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37802761

ABSTRACT

Steroidogenic Factor-1 (SF-1, NR5A1) is a member of the nuclear receptor superfamily of ligand-regulated transcription factors, consisting of a DNA-binding domain (DBD) connected to a transcriptional regulatory ligand binding domain (LBD) via an unstructured hinge domain. SF-1 is a master regulator of development and adult function along the hypothalamic pituitary adrenal and gonadal axes, with strong pathophysiological association with endometriosis and adrenocortical carcinoma. SF-1 was shown to bind and be regulated by phospholipids, one of the most interesting aspects of SF-1 regulation is the manner in which SF-1 interacts with phospholipids: SF-1 buries the phospholipid acyl chains deep in the hydrophobic core of the SF-1 protein, while the lipid headgroups remain solvent-exposed on the exterior of the SF-1 protein surface. Here, we have reviewed several aspects of SF-1 structure, function and physiology, touching on other transcription factors that help regulate SF-1 target genes, non-canonical functions of SF-1, the DNA-binding properties of SF-1, the use of mass spectrometry to identify lipids that associate with SF-1, how protein phosphorylation regulates SF-1 and the structural biology of the phospholipid-ligand binding domain. Together this review summarizes the form and function of Steroidogenic Factor-1 in physiology and in human disease, with particular emphasis on adrenal cancer.


Subject(s)
Phospholipids , Transcription Factors , Female , Humans , Phospholipids/genetics , Ligands , Steroidogenic Factor 1/genetics , Steroidogenic Factor 1/metabolism , Transcription Factors/metabolism , Receptors, Cytoplasmic and Nuclear , DNA
3.
Biomolecules ; 13(10)2023 10 12.
Article in English | MEDLINE | ID: mdl-37892191

ABSTRACT

Metazoan cell nuclei contain non-membrane pools of the phosphoinositide lipid PI(4,5)P2 (PIP2), but how this hydrophobic lipid exists within the aqueous nucleoplasm remains unclear. Steroidogenic Factor-1 (NR5A1, SF-1) is a nuclear receptor that binds PIP2 in vitro, and a co-crystal structure of the complex suggests the acyl chains of PIP2 are hidden in the hydrophobic core of the SF-1 protein while the PIP2 headgroup is solvent-exposed. This binding mode explains how SF-1 can solubilize nuclear PIP2; however, cellular evidence that SF-1 expression associates with nuclear PIP2 has been lacking. Here, we examined if tetracycline induction of SF-1 expression would associate with nuclear accumulation of PIP2, using antibodies directed against the PIP2 headgroup. Indeed, tetracycline induction of wild-type SF-1 induced a signal in the nucleus of HEK cells that cross-reacts with PIP2 antibodies, but did not cross-react with antibodies against the lower abundance phosphoinositide PI(3,4,5)P3 (PIP3). The nuclear PIP2 signal co-localized with FLAG-tagged SF-1 in the nuclear compartment. To determine if the nuclear PIP2 signal was dependent on the ability of SF-1 to bind PIP2, we examined a "pocket mutant" of SF-1 (A270W, L345F) shown to be deficient in phospholipid binding by mass spectrometry. Tetracycline induction of this pocket mutant SF-1 in HEK cells failed to induce a detectable PIP2 antibody cross-reactive signal, despite similar Tet-induced expression levels of the wild-type and pocket mutant SF-1 proteins in these cells. Together, these data are the first to suggest that expression of SF-1 induces a PIP2 antibody cross-reactive signal in the nucleus, consistent with X-ray crystallographic and biochemical evidence suggesting SF-1 binds PIP2 in human cells.


Subject(s)
Phosphatidylinositols , Receptors, Cytoplasmic and Nuclear , Steroidogenic Factor 1 , Animals , Humans , Cell Nucleus/metabolism , Phosphatidylinositols/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Tetracyclines
4.
Nucleic Acids Res ; 48(22): 12697-12710, 2020 12 16.
Article in English | MEDLINE | ID: mdl-33264397

ABSTRACT

Break-induced replication (BIR) is a mechanism used to heal one-ended DNA double-strand breaks, such as those formed at collapsed replication forks or eroded telomeres. Instead of utilizing a canonical replication fork, BIR is driven by a migrating D-loop and is associated with a high frequency of mutagenesis. Here we show that when BIR encounters an interstitial telomere sequence (ITS), the machinery frequently terminates, resulting in the formation of an ectopic telomere. The primary mechanism to convert the ITS to a functional telomere is by telomerase-catalyzed addition of telomeric repeats with homology-directed repair serving as a back-up mechanism. Termination of BIR and creation of an ectopic telomere is promoted by Mph1/FANCM helicase, which has the capacity to disassemble D-loops. Other sequences that have the potential to seed new telomeres but lack the unique features of a natural telomere sequence, do not terminate BIR at a significant frequency in wild-type cells. However, these sequences can form ectopic telomeres if BIR is made less processive. Our results support a model in which features of the ITS itself, such as the propensity to form secondary structures and telomeric protein binding, pose a challenge to BIR and increase the vulnerability of the D-loop to dissociation by helicases, thereby promoting ectopic telomere formation.


Subject(s)
DEAD-box RNA Helicases/genetics , DNA Replication/genetics , Recombination, Genetic , Saccharomyces cerevisiae Proteins/genetics , Telomere/genetics , DNA Breaks, Double-Stranded , DNA Damage/genetics , DNA Helicases/genetics , DNA Polymerase III/genetics , DNA Repair/genetics , Saccharomyces cerevisiae/genetics , Telomerase/genetics
5.
Mol Biol Cell ; 30(24): 2943-2952, 2019 11 15.
Article in English | MEDLINE | ID: mdl-31599702

ABSTRACT

Loss of mitochondrial DNA (mtDNA) results in loss of mitochondrial respiratory activity, checkpoint-regulated inhibition of cell cycle progression, defects in growth, and nuclear genome instability. However, after several generations, yeast cells can adapt to the loss of mtDNA. During this adaptation, rho0 cells, which have no mtDNA, exhibit increased growth rates and nuclear genome stabilization. Here, we report that an immediate response to loss of mtDNA is a decrease in replicative lifespan (RLS). Moreover, we find that adapted rho0 cells bypass the mtDNA inheritance checkpoint, exhibit increased mitochondrial function, and undergo an increase in RLS as they adapt to the loss of mtDNA. Transcriptome analysis reveals that metabolic reprogramming to compensate for defects in mitochondrial function is an early event during adaptation and that up-regulation of stress response genes occurs later in the adaptation process. We also find that specific subtelomeric genes are silenced during adaptation to loss of mtDNA. Moreover, we find that deletion of SIR3, a subtelomeric gene silencing protein, inhibits silencing of subtelomeric genes associated with adaptation to loss of mtDNA, as well as adaptation-associated increases in mitochondrial function and RLS extension.


Subject(s)
Cell Proliferation/genetics , Cellular Senescence/physiology , DNA, Mitochondrial/metabolism , Mitochondria/metabolism , Cell Cycle/genetics , Cell Division/genetics , Cellular Senescence/genetics , DNA Replication/genetics , DNA, Mitochondrial/physiology , Genomic Instability/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomycetales/metabolism , Silent Information Regulator Proteins, Saccharomyces cerevisiae/genetics , Silent Information Regulator Proteins, Saccharomyces cerevisiae/metabolism
6.
mBio ; 5(5): e01251-14, 2014 Aug 26.
Article in English | MEDLINE | ID: mdl-25161188

ABSTRACT

UNLABELLED: A subgroup of the cholesterol-dependent cytolysin (CDC) family of pore-forming toxins (PFTs) has an unusually narrow host range due to a requirement for binding to human CD59 (hCD59), a glycosylphosphatidylinositol (GPI)-linked complement regulatory molecule. hCD59-specific CDCs are produced by several organisms that inhabit human mucosal surfaces and can act as pathogens, including Gardnerella vaginalis and Streptococcus intermedius. The consequences and potential selective advantages of such PFT host limitation have remained unknown. Here, we demonstrate that, in addition to species restriction, PFT ligation of hCD59 triggers a previously unrecognized pathway for programmed necrosis in primary erythrocytes (red blood cells [RBCs]) from humans and transgenic mice expressing hCD59. Because they lack nuclei and mitochondria, RBCs have typically been thought to possess limited capacity to undergo programmed cell death. RBC programmed necrosis shares key molecular factors with nucleated cell necroptosis, including dependence on Fas/FasL signaling and RIP1 phosphorylation, necrosome assembly, and restriction by caspase-8. Death due to programmed necrosis in RBCs is executed by acid sphingomyelinase-dependent ceramide formation, NADPH oxidase- and iron-dependent reactive oxygen species formation, and glycolytic formation of advanced glycation end products. Bacterial PFTs that are hCD59 independent do not induce RBC programmed necrosis. RBC programmed necrosis is biochemically distinct from eryptosis, the only other known programmed cell death pathway in mature RBCs. Importantly, RBC programmed necrosis enhances the growth of PFT-producing pathogens during exposure to primary RBCs, consistent with a role for such signaling in microbial growth and pathogenesis. IMPORTANCE: In this work, we provide the first description of a new form of programmed cell death in erythrocytes (RBCs) that occurs as a consequence of cellular attack by human-specific bacterial toxins. By defining a new RBC death pathway that shares important components with necroptosis, a programmed necrosis module that occurs in nucleated cells, these findings expand our understanding of RBC biology and RBC-pathogen interactions. In addition, our work provides a link between cholesterol-dependent cytolysin (CDC) host restriction and promotion of bacterial growth in the presence of RBCs, which may provide a selective advantage to human-associated bacterial strains that elaborate such toxins and a potential explanation for the narrowing of host range observed in this toxin family.


Subject(s)
Bacterial Toxins/toxicity , Erythrocytes/drug effects , Necrosis/pathology , Perforin/toxicity , Animals , Apoptosis/drug effects , CD59 Antigens/metabolism , Caspase 8/metabolism , Erythrocytes/metabolism , Fas Ligand Protein/genetics , Fas Ligand Protein/metabolism , Glycosylphosphatidylinositols/metabolism , Humans , Immunoprecipitation , Mice , Mice, Inbred C57BL , Mice, Transgenic , Necrosis/chemically induced , Reactive Oxygen Species/metabolism , Signal Transduction , Streptococcus intermedius/metabolism , Streptococcus pneumoniae/metabolism
7.
Mol Cancer Res ; 10(5): 649-59, 2012 May.
Article in English | MEDLINE | ID: mdl-22426462

ABSTRACT

Inactivating mutations in the neurofibromatosis 2 (NF2) tumor suppressor gene results in the development of schwannomas and meningiomas. Using NF2-deficient meningioma cells and tumors, together with the normal cellular counterparts that meningiomas derive, arachnoid cells, we identified merlin as a novel negative regulator of mTOR complex 1 (mTORC1). We now show that merlin positively regulates the kinase activity of mTORC2, a second functionally distinct mTOR complex, and that downstream phosphorylation of mTORC2 substrates, including Akt, is reduced upon acute merlin deficiency in cells. In response to general growth factor stimulation, Akt signaling is attenuated in merlin RNA interference-suppressed human arachnoid and Schwann cells by mechanisms mediated by hyperactive mTORC1 and impaired mTORC2. Moreover, Akt signaling is impaired differentially in a cell type-dependent manner in response to distinct growth factor stimuli. However, contrary to activation of mTORC1, the attenuated mTORC2 signaling profiles exhibited by normal arachnoid and Schwann cells in response to acute merlin loss were not consistently reflected in NF2-deficient meningiomas and schwannomas, suggesting additional genetic events may have been acquired in tumors after initial merlin loss. This finding contrasts with another benign tumor disorder, tuberous sclerosis complex, which exhibits attenuated mTORC2 signaling profiles in both cells and tumors. Finally, we examined rapamycin, as well as the mTOR kinase inhibitor, Torin1, targeting both mTOR complexes to identify the most efficacious class of compounds for blocking mTOR-mediated signaling and proliferation in merlin-deficient meningioma cells. These studies may ultimately aid in the development of suitable therapeutics for NF2-associated tumors.


Subject(s)
Gene Expression Regulation, Neoplastic , Neurofibromin 2/metabolism , Signal Transduction , Transcription Factors/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/drug effects , Gene Expression Regulation, Neoplastic/genetics , Humans , Mechanistic Target of Rapamycin Complex 1 , Meningeal Neoplasms/genetics , Meningeal Neoplasms/metabolism , Meningioma/genetics , Meningioma/metabolism , Multiprotein Complexes , Naphthyridines/pharmacology , Neurilemmoma/genetics , Neurilemmoma/metabolism , Neurofibromin 2/deficiency , Neurofibromin 2/genetics , Oncogene Protein v-akt/metabolism , Proteins/antagonists & inhibitors , Proteins/metabolism , RNA Interference , Sirolimus/pharmacology , TOR Serine-Threonine Kinases , Transcription Factors/antagonists & inhibitors , Transcription Factors/genetics , Tuberous Sclerosis/genetics , Tuberous Sclerosis/metabolism
8.
J Bacteriol ; 190(21): 7302-7, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18723626

ABSTRACT

The SecA nanomotor promotes protein translocation in eubacteria by binding both protein cargo and the protein-conducting channel and by undergoing ATP-driven conformation cycles that drive this process. There are conflicting reports about whether SecA functions as a monomer or dimer during this dynamic process. Here we reexamined the roles of the amino and carboxyl termini of SecA in promoting its dimerization and functional state by examining three secA mutants and the corresponding proteins: SecADelta8 lacking residues 2 to 8, SecADelta11 lacking residues 2 to 11, and SecADelta11/N95 lacking both residues 2 to 11 and the carboxyl-terminal 70 residues. We demonstrated that whether SecADelta11 or SecADelta11/N95 was functional for promoting cell growth depended solely on the vivo level of the protein, which appeared to govern residual dimerization. All three SecA mutant proteins were defective for promoting cell growth unless they were highly overproduced. Cell fractionation revealed that SecADelta11 and SecADelta11/N95 were proficient in membrane association, although the formation of integral membrane SecA was reduced. The presence of a modestly higher level of SecADelta11/N95 in the membrane and the ability of this protein to form dimers, as detected by chemical cross-linking, were consistent with the higher level of secA expression and better growth of the SecADelta11/N95 mutant than of the SecADelta11 mutant. Biochemical studies showed that SecADelta11 and SecADelta11/N95 had identical dimerization defects, while SecADelta8 was intermediate between these proteins and wild-type SecA in terms of dimer formation. Furthermore, both SecADelta11 and SecADelta11/N95 were equally defective in translocation ATPase specific activity. Our studies showed that the nonessential carboxyl-terminal 70 residues of SecA play no role in its dimerization, while increasing the truncation of the amino-terminal region of SecA from 8 to 11 residues results in increased defects in SecA dimerization and poor in vivo function unless the protein is highly overexpressed. They also clarified a number of conflicting previous reports and support the essential nature of the SecA dimer.


Subject(s)
Adenosine Triphosphatases/metabolism , Bacterial Proteins/metabolism , Membrane Transport Proteins/metabolism , Adenosine Triphosphatases/chemistry , Adenosine Triphosphatases/genetics , Amino Acid Sequence , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Dimerization , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Membrane Transport Proteins/chemistry , Membrane Transport Proteins/genetics , Mutation , Protein Structure, Tertiary , SEC Translocation Channels , SecA Proteins , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...