Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 15(6)2023 Mar 09.
Article in English | MEDLINE | ID: mdl-36987145

ABSTRACT

The present work is focused on finding (i) the tearing energy at rupture and (ii) the redistribution of incorporated paraffin oil on the ruptured surfaces as functions of (a) the initial oil concentration and (b) the speed of deformation to the total rupture in a uniaxially induced deformation to rupture on an initially homogeneously oil incorporated styrene butadiene rubber (SBR) matrix. The aim is to understand the deforming speed of the rupture by calculating the concentration of the redistributed oil after rupture using infrared (IR) spectroscopy in an advanced continuation of a previously published work. The redistribution of the oil after tensile rupture for samples that have three different initial oil concentrations with a control sample that has no initial oil has been studied at three defined deformation speeds of rupture along with a cryo-ruptured sample. Single-edge notched tensile (SENT) specimens were used in the study. Parametric fittings of data at different deformation speeds were used to relate the concentration of the initial oil against the concentration of the redistributed oil. The novelty of this work is in the use of a simple IR spectroscopic method to reconstruct a fractographic process to rupture in relation to the speed of the deformation to rupture.

2.
Materials (Basel) ; 15(23)2022 Nov 28.
Article in English | MEDLINE | ID: mdl-36499962

ABSTRACT

The state of cure and the vulcanizate properties of a conventional accelerated sulfur (CV) cured 50/50 blend of natural rubber (NR) and bromobutyl rubber (BIIR) were inferior. However, this blend exhibits a higher extent of cure with remarkable improvements in its mechanical properties, particularly the tensile strength, modulus and hardness after curing with a combination of accelerated sulfur and three parts per hundred rubber (phr) of a bismaleimide (MF3). Moreover, with the use of 0.25 phr of dicumyl peroxide (DCP) along with the CV/MF3 system, the compression set property of the CV-only cured blend could be reduced from 68% to 15%. The enhanced compatibility between NR and BIIR with the aid of bismaleimide via the Diels-Alder reaction was identified as the primary reason for the improved cure state and the mechanical properties. However, the incorporation of a certain amount of bismaleimide as a crosslink in the NR phase of the blend, via a radical initiated crosslinking process by the action of DCP, is responsible for the improved compression set properties.

3.
Polymers (Basel) ; 13(24)2021 Dec 10.
Article in English | MEDLINE | ID: mdl-34960880

ABSTRACT

The rheometer curing curves of 50/50 blends of natural rubber (NR) and two different halogenated rubbers with a combination of conventional accelerated sulfur (CV) and 3 phr of a bismaleimide (MF3) at 170 °C indicates that a co-curing reaction has been taken place between NR and the halogenated rubbers via Diels-Alder reaction. To further confirm whether the co-curing reaction has taken place in the early stage of curing, a complex test methodology was applied with the help of a rubber process analyzer. In this test, the blends with CV and with CVMF3 were subjected to cure at 170 °C for a predetermined time so that both the CV and CVMF3 cured blends will have the same magnitude of curing torque. It is then cooled down to 40 °C and the storage modulus (G') was evaluated as a function of strain from 0.5% to 100% at a constant frequency of 1 Hz. The results reveal that the blends cured with CVMF3 exhibit a higher G' due to the enhanced network strength because of the formation of bismaleimide crosslinks than the same cured with only the CV system. The swelling resistance and the mechanical properties of the blends cured with CVMF3 were significantly higher than those cured with only the CV system.

4.
Polymers (Basel) ; 13(9)2021 May 07.
Article in English | MEDLINE | ID: mdl-34067201

ABSTRACT

The rheometer curing curves of neat natural rubber (NR) and neat chloroprene rubber (CR) with maleide F (MF) exhibit considerable crosslinking torque at 180 °C. This indicates that MF can crosslink both these rubbers via Alder-ene reactions. Based on this knowledge, MF has been introduced as a co-crosslinking agent for a 50/50 blend of NR and CR in conjunction with accelerated sulfur. The delta (Δ) torque obtained from the curing curves of a blend with the addition of 1 phr MF was around 62% higher than those without MF. As the content of MF increased to 3 phr, the Δ torque was further raised to 236%. Moreover, the mechanical properties, particularly the tensile strength of the blend with the addition of 1 phr MF in conjunction with the accelerated sulfur, was around 201% higher than the blend without MF. The overall tensile properties of the blends cured with MF were almost retained even after ageing the samples at 70 °C for 72 h. This significant improvement in the curing torque and the tensile properties of the blends indicates that MF can co-crosslink between NR and CR via the Diels-Alder reaction.

5.
Polymers (Basel) ; 13(8)2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33920836

ABSTRACT

Ultraviolet curing of elastomers is a special curing technique that has gained importance over the conventional chemical crosslinking method, because the former process is faster, and thus, time-saving. Usually, a suitable photoinitiator is required to initiate the process. Ultraviolet radiation of required frequency and intensity excites the photoinitiator which abstracts labile hydrogen atoms from the polymer with the generation of free radicals. These radicals result in crosslinking of elastomers via radical-radical coupling. In the process, some photodegradation may also take place. In the present work, a high vinyl (~50%) styrene-butadiene-styrene (SBS) block copolymer which is a thermoplastic elastomer was used as the base polymer. An attempt was made to see the effect of ultraviolet radiation on the mechanical properties of the block copolymer. The process variables were time of exposure and photoinitiator concentration. Mechanical properties like tensile strength, elongation at break, modulus at different elongations and hardness of the irradiated samples were studied and compared with those of unirradiated ones. In this S-B-S block copolymer, a relatively low exposure time and low photoinitiator concentration were effective in obtaining optimized mechanical properties. Infrared spectroscopy, contact angle and scanning electron microscopy were used to characterize the results obtained from mechanical measurements.

6.
Materials (Basel) ; 13(19)2020 Oct 07.
Article in English | MEDLINE | ID: mdl-33036408

ABSTRACT

A novel fractographic approach based on a combination of (i) mechanical behavior of cured rubber in uniaxial tensile loading and (ii) spectroscopy of fracture on a ruptured surface was experimentally validated. This approach related the migration of paraffin oil from a matrix to the ruptured rubber surface, to the tearing energy related to the deformation speed responsible for total rubber sample rupture, and the approach itself was configured experimentally. It was evaluated on cured natural rubber (NR) for two different paraffin oil concentrations. Single edge notched tensile (SENT) samples were subjected to uniaxial tensile loadings at two different deformation speeds. First, the tearing energy as a function of deformation speed was determined for each defined oil concentration. Secondly, at specific locations on the ruptured surfaces, infrared (IR) spectroscopy was performed to quantify a characteristic absorbance peak height of migrated paraffin oil during the rupture process. The results of the IR analyses were related to the deformation speed to understand the relation between the amount of migrated paraffin oil during the fracture process and the deformation speed which brought about such a fracture. This novel approach enhanced the reverse engineering process of rubber fracture related to the cause of tearing energies during critical failure.

SELECTION OF CITATIONS
SEARCH DETAIL
...