Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 96
Filter
Add more filters










Publication year range
1.
J Chem Phys ; 160(18)2024 May 14.
Article in English | MEDLINE | ID: mdl-38716846

ABSTRACT

A novel mixed quantum-classical approach to simulating nonadiabatic dynamics of molecules at metal surfaces is presented. The method combines the numerically exact hierarchical equations of motion approach for the quantum electronic degrees of freedom with Langevin dynamics for the classical degrees of freedom, namely, low-frequency vibrational modes within the molecule. The approach extends previous mixed quantum-classical methods based on Langevin equations to models containing strong electron-electron or quantum electronic-vibrational interactions, while maintaining a nonperturbative and non-Markovian treatment of the molecule-metal coupling. To demonstrate the approach, nonequilibrium transport observables are calculated for a molecular nanojunction containing strong interactions.

2.
J Chem Phys ; 160(7)2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38364004

ABSTRACT

The time-dependent relaxation of a dynamical system may exhibit a power-law behavior that is superimposed by log-periodic oscillations. D. Sornette [Phys. Rep. 297, 239 (1998)] showed that this behavior can be explained by a discrete scale invariance of the system, which is associated with discrete and equidistant timescales on a logarithmic scale. Examples include such diverse fields as financial crashes, random diffusion, and quantum topological materials. Recent time-resolved experiments and molecular dynamics simulations suggest that discrete scale invariance may also apply to hierarchical dynamics in proteins, where several fast local conformational changes are a prerequisite for a slow global transition to occur. Employing entropy-based timescale analysis and Markov state modeling to a simple one-dimensional hierarchical model and biomolecular simulation data, it is found that hierarchical systems quite generally give rise to logarithmically spaced discrete timescales. By introducing a one-dimensional reaction coordinate that collectively accounts for the hierarchically coupled degrees of freedom, the free energy landscape exhibits a characteristic staircase shape with two metastable end states, which causes the log-periodic time evolution of the system. The period of the log-oscillations reflects the effective roughness of the energy landscape and can, in simple cases, be interpreted in terms of the barriers of the staircase landscape.


Subject(s)
Molecular Dynamics Simulation , Proteins , Entropy
3.
J Chem Theory Comput ; 19(23): 8978-8986, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38011829

ABSTRACT

To sample rare events, dissipation-corrected targeted molecular dynamics (dcTMD) applies a constant velocity constraint along a one-dimensional reaction coordinate s, which drives an atomistic system from an initial state into a target state. Employing a cumulant approximation of Jarzynski's identity, the free energy ΔG(s) is calculated from the mean external work and dissipated work of the process. By calculating the friction coefficient Γ(s) from the dissipated work, in a second step, the equilibrium dynamics of the process can be studied by propagating a Langevin equation. While so far dcTMD has been mostly applied to study the unbinding of protein-ligand complexes, here its applicability to rare conformational transitions within a protein and the prediction of their kinetics are investigated. As this typically requires the introduction of multiple collective variables {xj} = x, a theoretical framework is outlined to calculate the associated free energy ΔG(x) and friction Γ(x) from dcTMD simulations along coordinate s. Adopting the α-ß transition of alanine dipeptide as well as the open-closed transition of T4 lysozyme as representative examples, the virtues and shortcomings of dcTMD to predict protein conformational transitions and the related kinetics are studied.


Subject(s)
Molecular Dynamics Simulation , Thermodynamics , Protein Conformation , Entropy , Kinetics
4.
J Phys Chem Lett ; 14(31): 6956-6967, 2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37504674

ABSTRACT

Adopting a 300 µs long MD trajectory of the folding of villin headpiece (HP35) by D. E. Shaw Research, we recently constructed a Markov state model (MSM) based on inter-residue contacts. The model reproduces the folding time and predicts that the native basin and unfolded region consist of metastable substates that are structurally well-characterized. Recognizing the need to establish well-defined benchmark problems, we study to what extent and in what sense this MSM can be employed as a reference model. Hence, we test the robustness of the MSM by comparing it to models that use alternative combinations of features, dimensionality reduction methods, and clustering schemes. The study suggests some main characteristics of the folding of HP35 that should be reproduced by other competitive models. Moreover, the discussion reveals which parts of the MSM workflow matter most for the considered problem and illustrates the promises and pitfalls of state-based models for the interpretation of biomolecular simulations.


Subject(s)
Molecular Dynamics Simulation , Protein Folding , Benchmarking
5.
J Chem Theory Comput ; 19(11): 3391-3405, 2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37167425

ABSTRACT

Markov state models represent a popular means to interpret molecular dynamics trajectories in terms of memoryless transitions between metastable conformational states. To provide a mechanistic understanding of the considered biomolecular process, these states should reflect structurally distinct conformations and ensure a time scale separation between fast intrastate and slow interstate dynamics. Adopting the folding of villin headpiece (HP35) as a well-established model problem, here we discuss the selection of suitable input coordinates or "features", such as backbone dihedral angles and interresidue distances. We show that dihedral angles account accurately for the structure of the native energy basin of HP35, while the unfolded region of the free energy landscape and the folding process are best described by tertiary contacts of the protein. To construct a contact-based model, we consider various ways to define and select contact distances and introduce a low-pass filtering of the feature trajectory as well as a correlation-based characterization of states. Relying on input data that faithfully account for the mechanistic origin of the studied process, the states of the resulting Markov model are clearly discriminated by the features, describe consistently the hierarchical structure of the free energy landscape, and─as a consequence─correctly reproduce the slow time scales of the process.


Subject(s)
Molecular Dynamics Simulation , Protein Folding , Molecular Conformation , Markov Chains
6.
J Chem Phys ; 158(12): 124106, 2023 Mar 28.
Article in English | MEDLINE | ID: mdl-37003731

ABSTRACT

Protein-ligand (un)binding simulations are a recent focus of biased molecular dynamics simulations. Such binding and unbinding can occur via different pathways in and out of a binding site. Here, we present a theoretical framework on how to compute kinetics along separate paths and on how to combine the path-specific rates into global binding and unbinding rates for comparison with experimental results. Using dissipation-corrected targeted molecular dynamics in combination with temperature-boosted Langevin equation simulations [S. Wolf et al., Nat. Commun. 11, 2918 (2020)] applied to a two-dimensional model and the trypsin-benzamidine complex as test systems, we assess the robustness of the procedure and discuss the aspects of its practical applicability to predict multisecond kinetics of complex biomolecular systems.


Subject(s)
Molecular Dynamics Simulation , Proteins , Ligands , Proteins/chemistry , Binding Sites , Protein Binding , Kinetics
7.
J Phys Chem Lett ; 13(42): 9862-9868, 2022 Oct 27.
Article in English | MEDLINE | ID: mdl-36251493

ABSTRACT

While allostery is of paramount importance for protein signaling and regulation, the underlying dynamical process of allosteric communication is not well understood. The PDZ3 domain represents a prime example of an allosteric single-domain protein, as it features a well-established long-range coupling between the C-terminal α3-helix and ligand binding. In an intriguing experiment, Hamm and co-workers employed photoswitching of the α3-helix to initiate a conformational change of PDZ3 that propagates from the C-terminus to the bound ligand within 200 ns. Performing extensive nonequilibrium molecular dynamics simulations, the modeling of the experiment reproduces the measured time scales and reveals a detailed picture of the allosteric communication in PDZ3. In particular, a correlation analysis identifies a network of contacts connecting the α3-helix and the core of the protein, which move in a concerted manner. Representing a one-step process and involving direct α3-ligand contacts, this cooperative transition is considered as the elementary step in the propagation of conformational change.


Subject(s)
Molecular Dynamics Simulation , PDZ Domains , Humans , Allosteric Regulation , Ligands , Protein Binding , Proteins/chemistry
8.
J Phys Chem B ; 126(43): 8735-8746, 2022 11 03.
Article in English | MEDLINE | ID: mdl-36261792

ABSTRACT

Photoproteins such as bacteriorhodopsin (bR) and rhodopsin (Rho) need to effectively dissipate photoinduced excess energy to prevent themselves from damage. Another well-studied seven transmembrane (TM) helices protein is the ß2 adrenergic receptor (ß2AR), a G protein-coupled receptor for which energy dissipation paths have been linked with allosteric communication. To study the vibrational energy transport in the active and inactive states of these proteins, a master equation approach [J. Chem. Phys.2020, 152, 045103] is employed, which uses scaling rules that allow us to calculate energy transport rates solely based on the protein structure. Despite their overall structural similarity, the three 7TM proteins reveal quite different strategies to redistribute excess energy. While bR quickly removes the energy using the TM7 helix as a "lightning rod", Rho exhibits a rather poor energy dissipation, which might eventually require the hydrolysis of the Schiff base between the protein and the retinal chromophore to prevent overheating. Heating the ligand adrenaline of ß2AR, the resulting energy transport network of the protein is found to change significantly upon switching from the active state to the inactive state. While the energy flow may highlight aspects of the inter-residue couplings of ß2AR, it seems not particularly suited to explain allosteric phenomena.


Subject(s)
Bacteriorhodopsins , Bacteriorhodopsins/chemistry , Rhodopsin/chemistry , Ligands , Schiff Bases/chemistry
9.
J Chem Theory Comput ; 18(8): 5079-5088, 2022 Aug 09.
Article in English | MEDLINE | ID: mdl-35793551

ABSTRACT

To interpret molecular dynamics simulations of biomolecular systems, systematic dimensionality reduction methods are commonly employed. Among others, this includes principal component analysis (PCA) and time-lagged independent component analysis (TICA), which aim to maximize the variance and the time scale of the first components, respectively. A crucial first step of such an analysis is the identification of suitable and relevant input coordinates (the so-called features), such as backbone dihedral angles and interresidue distances. As typically only a small subset of those coordinates is involved in a specific biomolecular process, it is important to discard the remaining uncorrelated motions or weakly correlated noise coordinates. This is because they may exhibit large amplitudes or long time scales and therefore will be erroneously considered important by PCA and TICA, respectively. To discriminate collective motions underlying functional dynamics from uncorrelated motions, the correlation matrix of the input coordinates is block-diagonalized by a clustering method. This strategy avoids possible bias due to presumed functional observables and conformational states or variation principles that maximize variance or time scales. Considering several linear and nonlinear correlation measures and various clustering algorithms, it is shown that the combination of linear correlation and the Leiden community detection algorithm yields excellent results for all considered model systems. These include the functional motion of T4 lysozyme to demonstrate the successful identification of collective motion, as well as the folding of the villin headpiece to highlight the physical interpretation of the correlated motions in terms of a functional mechanism.


Subject(s)
Algorithms , Molecular Dynamics Simulation , Cluster Analysis , Motion , Principal Component Analysis , Protein Conformation
10.
J Mol Biol ; 434(17): 167679, 2022 09 15.
Article in English | MEDLINE | ID: mdl-35690098

ABSTRACT

Allosteric communication between distant protein sites represents a key mechanism of biomolecular regulation and signal transduction. Compared to other processes such as protein folding, however, the dynamical evolution of allosteric transitions is still not well understood. As an example of allosteric coupling between distant protein regions, we consider the global open-closed motion of the two domains of T4 lysozyme, which is triggered by local motion in the hinge region. Combining extensive molecular dynamics simulations with a correlation analysis of interresidue contacts, we identify a network of interresidue distances that move in a concerted manner. The cooperative process originates from a cogwheel-like motion of the hydrophobic core in the hinge region, which constitutes an evolutionary conserved and flexible transmission network. Through rigid contacts and the protein backbone, the small local changes of the hydrophobic core are passed on to the distant terminal domains and lead to the emergence of a rare global conformational transition. As in an Ising-type model, the cooperativity of the allosteric transition can be explained via the interaction of local fluctuations.


Subject(s)
Allosteric Regulation , Molecular Dynamics Simulation , Proteins , Protein Conformation , Protein Folding , Proteins/chemistry
11.
J Chem Theory Comput ; 18(5): 2816-2825, 2022 May 10.
Article in English | MEDLINE | ID: mdl-35442659

ABSTRACT

The friction coefficient of fluids may become a function of the velocity at increased external driving. This non-Newtonian behavior is of general theoretical interest and of great practical importance, for example, for the design of lubricants. Although the effect has been observed in large-scale atomistic simulations of bulk liquids, its theoretical formulation and microscopic origin are not well understood. Here, we use dissipation-corrected targeted molecular dynamics, which pulls apart two tagged liquid molecules in the presence of surrounding molecules, and analyze this nonequilibrium process via a generalized Langevin equation. The approach is based on a second-order cumulant expansion of Jarzynski's identity, which is shown to be valid for fluids and therefore allows for an exact computation of the friction profile as well of the underlying memory kernel. We show that velocity-dependent friction in fluids results from an intricate interplay of near-order structural effects and the non-Markovian behavior of the friction memory kernel. For complex fluids such as the model lubricant C40H82, the memory kernel exhibits a stretched-exponential long-time decay, which reflects the multitude of timescales of the system.


Subject(s)
Molecular Dynamics Simulation , Friction
13.
J Phys Chem B ; 125(29): 8125-8136, 2021 07 29.
Article in English | MEDLINE | ID: mdl-34270245

ABSTRACT

Given nonstationary data from molecular dynamics simulations, a Markovian Langevin model is constructed that aims to reproduce the time evolution of the underlying process. While at equilibrium the free energy landscape is sampled, nonequilibrium processes can be associated with a biased energy landscape, which accounts for finite sampling effects and external driving. When the data-driven Langevin equation (dLE) approach [Phys. Rev. Lett. 2015, 115, 050602] is extended to the modeling of nonequilibrium processes, an efficient way to calculate multidimensional Langevin fields is outlined. The dLE is shown to correctly account for various nonequilibrium processes, including the enforced dissociation of sodium chloride in water, the pressure-jump induced nucleation of a liquid of hard spheres, and the conformational dynamics of a helical peptide sampled from nonstationary short trajectories.


Subject(s)
Molecular Dynamics Simulation , Water , Molecular Conformation , Peptides
14.
Chem Sci ; 12(9): 3350-3359, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-34164105

ABSTRACT

We report on a study that combines advanced fluorescence methods with molecular dynamics (MD) simulations to cover timescales from nanoseconds to milliseconds for a large protein. This allows us to delineate how ATP hydrolysis in a protein causes allosteric changes at a distant protein binding site, using the chaperone Hsp90 as test system. The allosteric process occurs via hierarchical dynamics involving timescales from nano- to milliseconds and length scales from Ångstroms to several nanometers. We find that hydrolysis of one ATP is coupled to a conformational change of Arg380, which in turn passes structural information via the large M-domain α-helix to the whole protein. The resulting structural asymmetry in Hsp90 leads to the collapse of a central folding substrate binding site, causing the formation of a novel collapsed state (closed state B) that we characterise structurally. We presume that similar hierarchical mechanisms are fundamental for information transfer induced by ATP hydrolysis through many other proteins.

15.
Nat Commun ; 12(1): 3284, 2021 06 02.
Article in English | MEDLINE | ID: mdl-34078890

ABSTRACT

Vibrational energy transfer (VET) is essential for protein function. It is responsible for efficient energy dissipation in reaction sites, and has been linked to pathways of allosteric communication. While it is understood that VET occurs via backbone as well as via non-covalent contacts, little is known about the competition of these two transport channels, which determines the VET pathways. To tackle this problem, we equipped the ß-hairpin fold of a tryptophan zipper with pairs of non-canonical amino acids, one serving as a VET injector and one as a VET sensor in a femtosecond pump probe experiment. Accompanying extensive non-equilibrium molecular dynamics simulations combined with a master equation analysis unravel the VET pathways. Our joint experimental/computational endeavor reveals the efficiency of backbone vs. contact transport, showing that even if cutting short backbone stretches of only 3 to 4 amino acids in a protein, hydrogen bonds are the dominant VET pathway.


Subject(s)
Alanine/analogs & derivatives , Proteins/chemistry , Tryptophan/chemistry , Allosteric Regulation , Azulenes/chemistry , Energy Transfer , Hydrogen Bonding , Molecular Dynamics Simulation , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Quantum Theory , Solutions , Thermodynamics , Vibration
16.
J Chem Phys ; 153(24): 244112, 2020 Dec 28.
Article in English | MEDLINE | ID: mdl-33380115

ABSTRACT

Markov processes provide a popular approach to construct low-dimensional dynamical models of a complex biomolecular system. By partitioning the conformational space into metastable states, protein dynamics can be approximated in terms of memory-less jumps between these states, resulting in a Markov state model (MSM). Alternatively, suitable low-dimensional collective variables may be identified to construct a data-driven Langevin equation (dLE). In both cases, the underlying Markovian approximation requires a propagation time step (or lag time) δt that is longer than the memory time τM of the system. On the other hand, δt needs to be chosen short enough to resolve the system timescale τS of interest. If these conditions are in conflict (i.e., τM > τS), one may opt for a short time step δt = τS and try to account for the residual non-Markovianity of the data by optimizing the transition matrix or the Langevin fields such that the resulting model best reproduces the observables of interest. In this work, rescaling the friction tensor of the dLE based on short-time information in order to obtain the correct long-time behavior of the system is suggested. Adopting various model problems of increasing complexity, including a double-well system, the dissociation of solvated sodium chloride, and the functional dynamics of T4 lysozyme, the virtues and shortcomings of the rescaled dLE are discussed and compared to the corresponding MSMs.


Subject(s)
Models, Molecular , Markov Chains , Time Factors
17.
J Chem Theory Comput ; 16(12): 7874-7882, 2020 Dec 08.
Article in English | MEDLINE | ID: mdl-33141565

ABSTRACT

Markov state models represent a popular means to interpret biomolecular processes in terms of memoryless transitions between metastable conformational states. To gain insight into the underlying mechanism, it is instructive to determine all relevant pathways between initial and final states of the process. Currently available methods, such as Markov chain Monte Carlo and transition path theory, are convenient for identifying the most frequented pathways. They are less suited to account for the typically huge amount of pathways with low probability which, though, may dominate the cumulative flux of the reaction. On the basis of a systematic construction of all possible pathways, the here proposed method MSMPathfinder is able to characterize the multitude of unique pathways (say, up to 1010) in a complex system and to quantitatively calculate their correct weights and associated waiting times with predefined accuracy. Adopting the chiral transitions of a peptide helix and the folding of the villin headpiece as model problems, mechanisms and associated waiting times of these processes are discussed using a kinetic network representation. The analysis reveals that the waiting time distribution may yield only little insight into the diversity of pathways, because the measured folding times do typically not reflect the most probable path lengths but rather the cumulative effect of many different pathways.


Subject(s)
Markov Chains , Molecular Dynamics Simulation , Peptides/chemistry , Monte Carlo Method
18.
Proc Natl Acad Sci U S A ; 117(42): 26031-26039, 2020 10 20.
Article in English | MEDLINE | ID: mdl-33020277

ABSTRACT

While allostery is of paramount importance for protein regulation, the underlying dynamical process of ligand (un)binding at one site, resulting time evolution of the protein structure, and change of the binding affinity at a remote site are not well understood. Here the ligand-induced conformational transition in a widely studied model system of allostery, the PDZ2 domain, is investigated by transient infrared spectroscopy accompanied by molecular dynamics simulations. To this end, an azobenzene-derived photoswitch is linked to a peptide ligand in a way that its binding affinity to the PDZ2 domain changes upon switching, thus initiating an allosteric transition in the PDZ2 domain protein. The subsequent response of the protein, covering four decades of time, ranging from ∼1 ns to ∼µs, can be rationalized by a remodeling of its rugged free-energy landscape, with very subtle shifts in the populations of a small number of structurally well-defined states. It is proposed that structurally and dynamically driven allostery, often discussed as limiting scenarios of allosteric communication, actually go hand-in-hand, allowing the protein to adapt its free-energy landscape to incoming signals.


Subject(s)
Molecular Dynamics Simulation , PDZ Domains , Protein Conformation , Protein Tyrosine Phosphatases/chemistry , Protein Tyrosine Phosphatases/metabolism , Allosteric Regulation , Binding Sites , Entropy , Humans , Ligands , Mutation , Protein Binding , Protein Tyrosine Phosphatases/genetics , Spectrophotometry, Infrared
19.
Nat Commun ; 11(1): 2918, 2020 06 10.
Article in English | MEDLINE | ID: mdl-32522984

ABSTRACT

Coarse-graining of fully atomistic molecular dynamics simulations is a long-standing goal in order to allow the description of processes occurring on biologically relevant timescales. For example, the prediction of pathways, rates and rate-limiting steps in protein-ligand unbinding is crucial for modern drug discovery. To achieve the enhanced sampling, we perform dissipation-corrected targeted molecular dynamics simulations, which yield free energy and friction profiles of molecular processes under consideration. Subsequently, we use these fields to perform temperature-boosted Langevin simulations which account for the desired kinetics occurring on multisecond timescales and beyond. Adopting the dissociation of solvated sodium chloride, trypsin-benzamidine and Hsp90-inhibitor protein-ligand complexes as test problems, we reproduce rates from molecular dynamics simulation and experiments within a factor of 2-20, and dissociation constants within a factor of 1-4. Analysis of friction profiles reveals that binding and unbinding dynamics are mediated by changes of the surrounding hydration shells in all investigated systems.


Subject(s)
Models, Theoretical , Benzamidines/chemistry , Binding Sites , Molecular Dynamics Simulation , Protein Binding , Sodium Chloride/chemistry , Thermodynamics , Trypsin/chemistry , Water/chemistry
20.
Chem Rev ; 120(15): 7152-7218, 2020 08 12.
Article in English | MEDLINE | ID: mdl-32598850

ABSTRACT

Vibrational spectroscopy is an essential tool in chemical analyses, biological assays, and studies of functional materials. Over the past decade, various coherent nonlinear vibrational spectroscopic techniques have been developed and enabled researchers to study time-correlations of the fluctuating frequencies that are directly related to solute-solvent dynamics, dynamical changes in molecular conformations and local electrostatic environments, chemical and biochemical reactions, protein structural dynamics and functions, characteristic processes of functional materials, and so on. In order to gain incisive and quantitative information on the local electrostatic environment, molecular conformation, protein structure and interprotein contacts, ligand binding kinetics, and electric and optical properties of functional materials, a variety of vibrational probes have been developed and site-specifically incorporated into molecular, biological, and material systems for time-resolved vibrational spectroscopic investigation. However, still, an all-encompassing theory that describes the vibrational solvatochromism, electrochromism, and dynamic fluctuation of vibrational frequencies has not been completely established mainly due to the intrinsic complexity of intermolecular interactions in condensed phases. In particular, the amount of data obtained from the linear and nonlinear vibrational spectroscopic experiments has been rapidly increasing, but the lack of a quantitative method to interpret these measurements has been one major obstacle in broadening the applications of these methods. Among various theoretical models, one of the most successful approaches is a semiempirical model generally referred to as the vibrational spectroscopic map that is based on a rigorous theory of intermolecular interactions. Recently, genetic algorithm, neural network, and machine learning approaches have been applied to the development of vibrational solvatochromism theory. In this review, we provide comprehensive descriptions of the theoretical foundation and various examples showing its extraordinary successes in the interpretations of experimental observations. In addition, a brief introduction to a newly created repository Web site (http://frequencymap.org) for vibrational spectroscopic maps is presented. We anticipate that a combination of the vibrational frequency map approach and state-of-the-art multidimensional vibrational spectroscopy will be one of the most fruitful ways to study the structure and dynamics of chemical, biological, and functional molecular systems in the future.


Subject(s)
Models, Chemical , Proteins/chemistry , Spectrum Analysis/methods , Humans , Spectrum Analysis, Raman , Static Electricity , Vibration
SELECTION OF CITATIONS
SEARCH DETAIL
...