Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Qual ; 48(4): 889-898, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31589665

ABSTRACT

Reducing agricultural runoff is important year round, particularly on landscapes that receive wintertime applications of manure. No-tillage systems are typically associated with reduced runoff loads during the growing season, but surface roughness from fall tillage may aid infiltration on frozen soils by providing surface depressional storage. The timing of winter manure applications may also affect runoff, depending on snow and soil frost conditions. Therefore, the objective of this study was to evaluate runoff and nutrient loads during the freezing season from combinations of tillage and manure application timings. Six management treatments were tested in south-central Wisconsin during the winters of 2015-2016 and 2016-2017 with a complete factorial design: two tillage treatments (fall chisel plow vs. no-tillage) and three manure application timings (early December, late January, and unmanured). Nutrient loads from winter manure application were lower on chisel-plowed versus untilled soils during both monitoring years. Loads were also lower from manure applied to soils with less frost development. Wintertime manure applications pose a risk of surface nutrient losses, but fall tillage and timing applications to thawed soils can help reduce loads.


Subject(s)
Manure , Nutrients , Agriculture , Freezing , Phosphorus , Seasons , Soil , Wisconsin
2.
J Environ Qual ; 48(4): 899-906, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31589672

ABSTRACT

Agricultural P loss from fields is an issue due to water quality degradation. Better information is needed on the P loss in runoff from dairy manure applied in winter and the ability to reliably simulate P loss by computer models. We monitored P in runoff during two winters from chisel-tilled and no-till field plots that had liquid dairy manure applied in December or January. Runoff total P was dominated by nondissolved forms when soils were bare and unfrozen. Runoff from snow-covered, frozen soils had much less sediment and sediment-related P, and much more dissolved P. Transport of manure solids was greatest when manure was applied on top of snow and runoff shortly after application was caused by snowmelt. Dissolved P concentrations in runoff were greater when manure was applied on top of snow because manure liquid remained in the snowpack and allowed more P to be available for loss. Dissolved runoff P also increased as the amount of rain or snowmelt that became runoff (runoff ratio) increased. The SurPhos manure P runoff model reliably simulated these processes to provide realistic predictions of dissolved P in runoff from surface manure. Overall, for liquid dairy manure applied in winter, dissolved P concentrations in runoff can be decreased if manure is applied onto bare, unfrozen soil, or if runoff ratio can be reduced, perhaps through greater soil surface roughness from fall tillage. Both management approaches will allow more manure P to infiltrate into soil and less move in runoff. SurPhos is a tool that can reliably evaluate P loss for different management and policy scenarios for winter manure application.


Subject(s)
Manure , Phosphorus , Agriculture , Rain , Soil , Water Movements
3.
J Environ Qual ; 47(4): 848-855, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30025035

ABSTRACT

Agricultural nutrient management is an issue due to N and P losses from fields and water quality degradation. Better information is needed on the risk of nutrient loss in runoff from dairy manure applied in winter. We investigated the effect of temperature on nutrient release from liquid and semisolid manure to water, and of manure quantity and placement within a snowpack on nutrient release to melting snow. Temperature did not affect manure P and NH-N release during water extraction. Manure P release, but not NH-N release, was significantly influenced by the water/manure solids extraction ratio. During snowmelt, manure P release was not significantly affected by manure placement in the snowpack, and the rate of P release decreased as application rate increased. Water extraction data can reliably estimate P release from manure during snowmelt; however, snowmelt water interaction with manure of greater solids content and subsequent P release appears incomplete compared with liquid manures. Manure NH-N released during snowmelt was statistically the same regardless of application rate. For the semisolid manure, NH-N released during snowmelt increased with the depth of snow covering it, most likely due to reduced NH volatilization. For the liquid manure, there was no effect of manure placement within the snowpack on NH-N released during snowmelt. Water extraction data can also reliably estimate manure NH-N release during snowmelt as long as NH volatilization is accounted for with liquid manures for all placements in a snowpack and semisolid manures applied on top of snow.


Subject(s)
Manure , Nitrogen/analysis , Phosphorus/analysis , Agriculture , Dairying , Seasons , Snow , Temperature
4.
J Environ Qual ; 46(6): 1395-1402, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29293831

ABSTRACT

Agricultural phosphorus (P) management is a research and policy issue due to P loss from fields and water quality degradation. Better information is needed on the risk of P loss from dairy manure applied in winter or when runoff is imminent. We used the SurPhos computer model and 108 site-years of weather and runoff data to assess the impact of these two practices on dissolved P loss. Model results showed that winter manure application can increase P loss by 2.5 to 3.6 times compared with non-winter applications, with the amount increasing as the average runoff from a field increases. Increased P loss is true for manure applied any time from late November through early March, with a maximum P loss from application in late January and early February. Shifting manure application to fields with less runoff can reduce P loss by 3.4 to 7.5 times. Delaying manure application when runoff is imminent can reduce P loss any time of the year, and sometimes quite significantly, but the number of times that application delays will reduce P loss is limited to only 3 to 9% of possible spreading days, and average P loss may be reduced by only 15% for winter-applied manure and 6% for non-winter-applied manure. Overall, long-term strategies of shifting manure applications to low runoff seasons and fields can potentially reduce dissolved P loss in runoff much more compared with near-term, tactical application decisions of avoiding manure application when runoff is imminent.


Subject(s)
Agriculture , Manure , Phosphorus/analysis , Water Quality , Seasons , Water Movements
5.
Ecology ; 89(10): 2692-9, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18959307

ABSTRACT

When parasitic infections are severe or highly prevalent among prey, a significant component of the predator's diet may consist of parasitized hosts. However, despite the ubiquity of parasites in most food webs, comparisons of the nutritional quality of prey as a function of infection status are largely absent. We measured the nutritional consequences of chytridiomycete infections in Daphnia, which achieve high prevalence in lake ecosystems (>80%), and tested the hypothesis that Daphnia pulicaria infected with Polycaryum laeve are diminished in food quality relative to uninfected hosts. Compared with uninfected adults, infected individuals were smaller, contained less nitrogen and phosphorus, and were lower in several important fatty acids. Infected zooplankton had significantly shorter carapace lengths (8%) and lower mass (8-20%) than uninfected individuals. Parasitized animals contained significantly less phosphorus (16-18% less by dry mass) and nitrogen (4-6% less) than did healthy individuals. Infected individuals also contained 26-34% less saturated fatty acid and 31-42% less docosahexaenoic acid, an essential fatty acid that is typically low in cladocera, but critical to fish growth. Our results suggest that naturally occurring levels of chytrid infections in D. pulicaria populations reduce the quality of food available to secondary consumers, including planktivorous fishes, with potentially important effects for lake food webs.


Subject(s)
Chytridiomycota/growth & development , Daphnia/parasitology , Ecosystem , Fishes/physiology , Food Chain , Animals , Daphnia/microbiology , Fatty Acids/analysis , Fatty Acids/metabolism , Food Preferences , Nitrogen/analysis , Nitrogen/metabolism , Nutritive Value , Phosphorus/analysis , Phosphorus/metabolism , Predatory Behavior , Zooplankton
SELECTION OF CITATIONS
SEARCH DETAIL
...