Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Acoust Soc Am ; 153(1): 237, 2023 01.
Article in English | MEDLINE | ID: mdl-36732269

ABSTRACT

A 700 kHz histotripsy array is used to generate repeated cavitation events in agarose, gelatin, and polyacrylamide hydrogels. High-speed optical imaging, a broadband hydrophone, and the narrow-band receive elements of the histotripsy array are used to capture bubble dynamics and acoustic cavitation emissions. Bubble radii, lifespan, shockwave amplitudes are noted to be measured in close agreement between the different observation methods. These features also decrease with increasing hydrogel stiffness for all of the tested materials. However, the evolutions of these properties during the repeated irradiations vary significantly across the different material subjects. Bubble maximum radius initially increases, then plateaus, and finally decreases in agarose, but remains constant across exposures in gelatin and polyacrylamide. The bubble lifespan increases monotonically in agarose and gelatin but decreases in polyacrylamide. Collapse shockwave amplitudes were measured to have different-shaped evolutions between all three of the tested materials. Bubble maximum radii, lifespans, and collapse shockwave amplitudes were observed to express evolutions that are dependent on the structure and stiffness of the nucleation medium.


Subject(s)
High-Intensity Focused Ultrasound Ablation , Humans , High-Intensity Focused Ultrasound Ablation/methods , Hydrogels , Gelatin , Sepharose , Acoustics
2.
Article in English | MEDLINE | ID: mdl-35617178

ABSTRACT

A novel method for fabricating a modular, kerf-minimizing histotripsy phased array was developed and tested. The method utilizes arbitrarily shaped elements, 3-D printing, water jet cutting, and a thin, 125- [Formula: see text] electrically insulating epoxy coating to maximize aperture utilization while allowing for replacement of individual transducer modules. The method was used to fabricate a 750-kHz truncated circular aperture array (165 mm ×234 mm) transducer with a focal length of 142 mm. The aperture was segmented into 260 arc-shaped modular elements, each approximately 11.5 mm ×11.5 mm, arranged in concentric rings. The resulting aperture utilization was 92%. The full-width-half-maximum (FWHM) focal zone of the array was measured to be 1.6 mm ×1.1 mm ×4.5 mm, and the FWHM electrical steering range was measured to be 38.5 mm ×33 mm 40 mm. The array was estimated to be capable of generating approximately 120-MPa peak negative pressure at the geometric focus. In addition, the array was used to ablate a 5-cm3 volume of tissue with electric focal steering.


Subject(s)
Ultrasonic Therapy , Transducers , Ultrasonic Therapy/methods , Water
3.
Ultrasound Med Biol ; 47(12): 3447-3457, 2021 12.
Article in English | MEDLINE | ID: mdl-34593277

ABSTRACT

As blood clots age, many thrombolytic techniques become less effective. To fully evaluate these techniques for potential clinical use, a large animal aged-clot model is needed. Previous minimally invasive attempts to allow clots to age in an in vivo large animal model were unsuccessful because of the clot clearance associated with relatively high level of cardiac health of readily available research pigs. Prior models have thus subsequently used invasive surgical techniques with the associated morbidity, animal stress and cost. We propose a method for forming sub-acute venous blood clots in an in-vivo porcine model. The age of the clots can be controlled and varied. By using an intravenous scaffold to anchor the clot to the vessel wall during the aging process, we can show that sub-acute clots can consistently be formed with a minimally invasive, percutaneous approach. The clot formed in this study remained intact for at least 1 wk in all subjects. Therefore, we established a new minimally invasive, large animal aged-clot model for evaluation of thrombolytic techniques.


Subject(s)
Thrombosis , Venous Thrombosis , Animals , Disease Models, Animal , Fibrinolytic Agents/therapeutic use , Swine , Thrombolytic Therapy , Thrombosis/drug therapy , Venous Thrombosis/diagnostic imaging
4.
Article in English | MEDLINE | ID: mdl-33507869

ABSTRACT

A 34-mm aperture transducer was designed and tested for proof of concept to ablate tissues using an endocavity histotripsy device. Several materials and two drivers were modeled and tested to determine an effective piezoelectric-matching layer combination and driver design. The resulting transducer was fabricated using 1.5 MHz porous PZT and PerFORM 3-D printed acoustic lenses and was driven with a multicycle class-D amplifier. The lower frequency, compared to previously developed small form factor histotripsy transducers, was selected to allow for more efficient volume ablation of tissue. The transducer was characterized and tested by measuring pressure field maps in the axial and lateral planes and pressure output as a function of driving voltage. The axial and lateral full-width-half-maximums of the focus were found to be 6.1 and 1.1 mm, respectively. The transducer was estimated to generate 34.5-MPa peak negative focal pressure with a peak-to-peak driving voltage of 1345 V. Performance testing was done by ablating volumes of bovine liver tissues ( n = 3 ). The transducer was found to be capable of ablating tissues at its full working distance of 17 mm.


Subject(s)
High-Intensity Focused Ultrasound Ablation , Transducers , Acoustics , Animals , Cattle , Equipment Design , Liver/diagnostic imaging , Liver/surgery
SELECTION OF CITATIONS
SEARCH DETAIL
...