Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 581(Pt B): 682-689, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-32814191

ABSTRACT

Bacterial anchoring to limestone rocks is thought to occur by selective adsorption of biomolecules found in the extracellular matrix, such as polysaccharides. Here we study the adsorbed structure of a model matrix polysaccharide, sodium alginate, at the calcite/water interface using neutron reflection (NR). Sodium alginate was found to form highly hydrated layers extending up to 350 Å into solution at concentrations up to 2.5 ppm (the inflection point of the adsorption isotherm). The adsorption of alginate was driven by dissolution of the calcite surface through complexation of free calcium ions. This was shown using two alginates with differing ratios of sugar residues. Alginates with a higher proportion of guluronic acid (G) have a higher affinity for calcium ions and were found to cause the surface to dissolve to a greater extent and to adsorb more at the surface when compared to alginates with a higher proportion of mannuronic acid (M). Adding magnesium to the high G alginate solution reduced dissolution of the surface and the adsorbed amount. In this work, we have shown that polysaccharide adsorption to sparingly soluble calcite interfaces is closely related to polymer conformation and affinity for free calcium ions in solution.


Subject(s)
Alginates , Calcium Carbonate , Adsorption , Calcium , Glucuronic Acid , Hexuronic Acids , Polysaccharides
2.
Elife ; 92020 12 08.
Article in English | MEDLINE | ID: mdl-33289480

ABSTRACT

Our knowledge about the repertoire of ribosomal RNA modifications and the enzymes responsible for installing them is constantly expanding. Previously, we reported that NSUN-5 is responsible for depositing m5C at position C2381 on the 26S rRNA in Caenorhabditis elegans. Here, we show that NSUN-1 is writing the second known 26S rRNA m5C at position C2982. Depletion of nsun-1 or nsun-5 improved thermotolerance and slightly increased locomotion at midlife, however, only soma-specific knockdown of nsun-1 extended lifespan. Moreover, soma-specific knockdown of nsun-1 reduced body size and impaired fecundity, suggesting non-cell-autonomous effects. While ribosome biogenesis and global protein synthesis were unaffected by nsun-1 depletion, translation of specific mRNAs was remodeled leading to reduced production of collagens, loss of structural integrity of the cuticle, and impaired barrier function. We conclude that loss of a single enzyme required for rRNA methylation has profound and highly specific effects on organismal development and physiology.


Subject(s)
Aging/metabolism , Caenorhabditis elegans Proteins/metabolism , Longevity/physiology , Methyltransferases/metabolism , Animals , Caenorhabditis elegans , Female , Fertility/physiology , Oogenesis/physiology , RNA Processing, Post-Transcriptional/physiology
3.
Sci Rep ; 5: 10519, 2015 May 27.
Article in English | MEDLINE | ID: mdl-26013156

ABSTRACT

The relative wettability of oil and water on solid surfaces is generally governed by a complex competition of molecular interaction forces acting in such three-phase systems. Herein, we experimentally demonstrate how the adsorption of in nature abundant divalent Ca(2+) cations to solid-liquid interfaces induces a macroscopic wetting transition from finite contact angles (≈ 10°) with to near-zero contact angles without divalent cations. We developed a quantitative model based on DLVO theory to demonstrate that this transition, which is observed on model clay surfaces, mica, but not on silica surfaces nor for monovalent K(+) and Na(+) cations is driven by charge reversal of the solid-liquid interface. Small amounts of a polar hydrocarbon, stearic acid, added to the ambient decane synergistically enhance the effect and lead to water contact angles up to 70° in the presence of Ca(2+). Our results imply that it is the removal of divalent cations that makes reservoir rocks more hydrophilic, suggesting a generalizable strategy to control wettability and an explanation for the success of so-called low salinity water flooding, a recent enhanced oil recovery technology.

4.
J Colloid Interface Sci ; 418: 140-6, 2014 Mar 15.
Article in English | MEDLINE | ID: mdl-24461829

ABSTRACT

The adsorption of the surfactant Aerosol-OT (AOT) at the calcite-water interface has been investigated using batch adsorption isotherms and neutron reflection. The adsorption isotherms showed that NaAOT adsorption followed S-type adsorption behaviour with a maximum surface excess of 2.5 mg m(-2) but the method could not be used for the investigation of Ca(AOT)2 adsorption owing to the changes in the bulk phase behaviour of the solution. The surface excess, determined by neutron reflection at the critical micelle concentration (CMC), was 2.5 mg m(-2) for Ca(AOT)2 and 1.8 mg m(-2) for NaAOT. The time dependence of the NaAOT adsorption suggests a slow conversion from the sodium to the calcium salt of AOT at the calcite-water interface by binding calcium ions released from the slightly soluble calcite. The layer thickness in both cases was 35 Å which indicates adsorption as bilayers or distorted micelles. At higher concentrations of NaAOT (~10× CMC) adsorption of an AOT lamellar phase was evident from Bragg peaks in the specular reflection. To our knowledge, this is the first time that adsorption of a surfactant at the calcite-water interface has been investigated by neutron reflection. The technique provided significant new insight into the adsorption behaviour of AOT which would not have been accessible using traditional techniques.

5.
Langmuir ; 29(18): 5520-7, 2013 May 07.
Article in English | MEDLINE | ID: mdl-23547891

ABSTRACT

The binding of an anionic surfactant onto an anionic surface by addition of divalent ions is reported based on experimental data from specular neutron reflection (NR) and attenuated total internal reflection IR spectroscopy (ATR-IR). Similar measurements using monovalent ions (sodium) do not show any evidence of such adsorption, even though the amount of surfactant can be much higher. This data is interpreted in terms of the so-called bridging mechanism of ion binding.

SELECTION OF CITATIONS
SEARCH DETAIL
...