Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
1.
ACS Appl Mater Interfaces ; 16(15): 18643-18657, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38564504

ABSTRACT

Musculoskeletal diseases involving tissue injury comprise tendon, ligament, and muscle injury. Recently, macrophages have been identified as key players in the tendon repair process, but no therapeutic strategy involving dual drug delivery and gene delivery to macrophages has been developed for targeting the two main dysregulated aspects of macrophages in tendinopathy, i.e., inflammation and fibrosis. Herein, the anti-inflammatory and antifibrotic effects of dual-loaded budesonide and serpine1 siRNA lipid-polymer hybrid nanoparticles (LPNs) are evaluated in murine and human macrophage cells. The modulation of the gene and protein expression of factors associated with inflammation and fibrosis in tendinopathy is demonstrated by real time polymerase chain reaction and Western blot. Macrophage polarization to the M2 phenotype and a decrease in the production of pro-inflammatory cytokines are confirmed in macrophage cell lines and primary cells. The increase in the activity of a matrix metalloproteinase involved in tissue remodelling is proven, and studies evaluating the interactions of LPNs with T cells proved that dual-loaded LPNs act specifically on macrophages and do not induce any collateral effects on T cells. Overall, these dual-loaded LPNs are a promising combinatorial therapeutic strategy with immunomodulatory and antifibrotic effects in dysregulated macrophages in the context of tendinopathy.


Subject(s)
Nanoparticles , Tendinopathy , Animals , Humans , Mice , Polymers , RNA, Small Interfering/genetics , Budesonide , Macrophages , Inflammation , Lipids , Fibrosis
2.
Dermatol Ther (Heidelb) ; 14(3): 613-626, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38459237

ABSTRACT

INTRODUCTION: Targeting of the proinflammatory cytokine interleukin 17A (IL-17A) or tumor necrosis factor alpha (TNFα) with the monoclonal antibodies (mAbs) ixekizumab or adalimumab, respectively, is a successful therapy for chronic plaque psoriasis. The effects of these treatments on immune cell populations in the skin are largely unknown. METHODS: In this study, we compared the composition of cutaneous, lesional and non-lesional immune cells and blood immune cells in ixekizumab- or adalimumab-treated patients with psoriasis. RESULTS: Our data reveal that both treatments efficiently downregulate T cells, macrophages and different subsets of dendritic cells (DCs) in lesional skin towards levels of healthy skin. In contrast to lesional skin, non-lesional areas in patients harbor only few or no detectable DCs compared to the skin of healthy subjects. Treatment with neither ixekizumab nor adalimumab reversed this DC imbalance in non-lesional skin of psoriatic patients. CONCLUSION: Our study shows that anti-IL-17A and anti-TNFα therapy rebalances the immune cell repertoire of lesional skin in psoriatic patients but fails to restore the disturbed immune cell repertoire in non-lesional skin.

3.
Mater Today Bio ; 25: 101001, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38420144

ABSTRACT

Tendon diseases pose a significant challenge in regenerative medicine due to the limited healing capacity of this tissue. Successful tendon regeneration requires a combination of angiogenesis, immune response, and tenogenesis processes. An effective tendon engineering (TE) strategy must finely tune this systems' interplay toward homeostasis. This study explores in vitro the paracrine influence of amniotic epithelial stem cells (AECs) engineered on a validated 3D electrospun PLGA scaffolds on HUVECs (angiogenesis), PBMCs/Jurkat (immune response), and AECs (tenogenic stem cell activation). The results revealed the role of scaffold's topology and topography in significantly modulating the paracrine profile of the cells. In detail, AECs basal release of bioactive molecules was boosted in the cells engineered on 3D scaffolds, in particular VEGF-D, b-FGF, RANTES, and PDGF-BB (p < 0.0001 vs. CMCTR). Moreover, biological tests demonstrated 3D scaffolds' proactive role in potentiating AECs' paracrine inhibition on PBMCs proliferation (CM3Dvs. CTR, p < 0.001) and LPS-mediated Jurkat activation with respect to controls (CM3D and CM2Dvs. CTR, p < 0.01 and p < 0.05, respectively), without exerting any in vitro pro-angiogenic role in promoting HUVECs proliferation and tubule formation. Teno-inductive paracrine ability of AECs engineered on 3D scaffolds was assessed on co-cultured ones, which formed tendon-like structures. These latter demonstrated an upregulation of tendon-related genes (SCX, THBS4, COL1, and TNMD) and the expression TNMD and COL1 proteins. Overall, this research underscores the pivotal role of the 3D topology and topography of PLGA tendon mimetic scaffolds in orchestrating effective tendon regeneration through modulating cell behavior and crosstalk between engineered stem cells and different subpopulations in the damaged tendon.

4.
PLoS One ; 19(1): e0296482, 2024.
Article in English | MEDLINE | ID: mdl-38236839

ABSTRACT

INTRODUCTION: Common cold (CC) symptoms arise from an inflammatory response treatable with cineole and generally peak within two days, which complicates research implementation. We therefore explored the benefits of early cineole administration with enrolment of participants prior to CC onset. METHODS: Out of 522 adults enrolled in our phase IV, open-label, non-randomized, exploratory clinical trial (EudraCT No. 2020-000860-51), 329 developed a CC and used 200 mg cineole (Soledum®, CNL-1976) t.i.d. for max. 15 (± 2) days. Primary endpoint was burden of disease based on the Wisconsin Upper Respiratory Symptom Survey (WURSS-11). RESULTS: Comparing three strata based on time to treatment (≤ 12 h, > 12 to ≤ 24 h and > 24 h), earliest treatment resulted in lowest AUC-WURSS (Spearman correlation coefficient of 0.36) and reduced the overall burden of disease by 38% (p < 0.0001). Earlier and lower symptom severity peak resulted, with shorter time to remission (average 8.9 vs. 10.7 days with latest treatment initiation, p < 0.05), and higher and faster recovering quality of life (p < 0.05). Tolerability was mostly rated as "very good", with adverse events of suspected causal relationship reported in 4.3% of participants. CONCLUSIONS: Early intervention shows clinical benefits relevant for the effective treatment of CC with cineole.


Subject(s)
Common Cold , Adult , Humans , Common Cold/drug therapy , Common Cold/complications , Eucalyptol , Quality of Life , Severity of Illness Index , Surveys and Questionnaires
5.
Infection ; 51(5): 1329-1337, 2023 Oct.
Article in English | MEDLINE | ID: mdl-36737561

ABSTRACT

PURPOSE: Inappropriate antibiotic prescription in patients with viral infections contributes to the surge of antibiotic resistance. Viral infections induce the expression of the antiviral protein MxA in monocytes, which is a promising biomarker to differentiate between viral and bacterial diseases. In this prospective, exploratory study, we aimed to determine the diagnostic value of monocyte MxA expression in adults with viral, bacterial or co-infections. METHODS: We measured monocyte MxA expression using flow cytometry in a cohort of 61 adults with various viral, bacterial and co-infections including patients receiving immunosuppressive therapy. RESULTS: Monocyte MxA expression in virus-infected patients was significantly higher compared to bacterial infections (83.3 [66.8, 109.4] vs. 33.8 [29.3, 47.8] mean fluorescence intensity [MFI]; p < 0.0001) but not co-infections (53.1 [33.9, 88.9] MFI). At a threshold of 62.2 MFI, the area under the ROC curve (AUC) to differentiate between viral and bacterial infections was 0.9, with a sensitivity and specificity of 92.3% and 84.6%, respectively. Immunosuppressive therapy did not affect monocyte MxA expression in virus-infected patients. CONCLUSION: Our findings corroborate the diagnostic performance of MxA in differentiating viral and bacterial infections but also point to an important caveat of MxA in viral-bacterial co-infections. This study extends previous reports and indicates that MxA is also a useful biomarker in immunocompromised patients.


Subject(s)
Bacterial Infections , Coinfection , Virus Diseases , Viruses , Humans , Adult , Prospective Studies , Myxovirus Resistance Proteins , Coinfection/diagnosis , Virus Diseases/diagnosis , Bacterial Infections/diagnosis , Biomarkers
6.
J Virus Erad ; 8(4): 100305, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36514716

ABSTRACT

Rhinoviruses (RVs) and coronaviruses (CoVs) upregulate host cell metabolic pathways such as glycolysis to meet their bioenergetic demands for rapid multiplication. Using the glycolysis inhibitor 2-deoxy-d-glucose (2-DG), we assessed the dose-dependent inhibition of viral replication of minor- and major-receptor group RVs in epithelial cells. 2-DG disrupted RV infection cycle by inhibiting template negative-strand as well as genomic positive-strand RNA synthesis, resulting in less progeny virus and RV-mediated cell death. Assessment of 2-DG's intracellular kinetics revealed that after a short-exposure to 2-DG, the active intermediate, 2-DG6P, is stored intracellularly for several hours. Finally, we confirmed the antiviral effect of 2-DG on pandemic SARS-CoV-2 and showed for the first time that it also reduces replication of endemic human coronaviruses. These results provide further evidence that 2-DG could be used as a broad-spectrum antiviral.

7.
J Phys Chem Lett ; 13(26): 6244-6249, 2022 Jul 07.
Article in English | MEDLINE | ID: mdl-35771050

ABSTRACT

The discovery of the electrons' chiral induced spin selective transmission (CISS) through chiral molecules has opened the pathway for manipulating spin transport in nonmagnetic structures on the nanoscale. CISS has predominantly been explored in structurally helical molecules on surfaces, where the spin selectivity affects only the spin polarization of the electrons along their direction of propagation. Here, we demonstrate a spin selective electron transmission for the point-chiral molecule 3-methylcyclohexanone (3-MCHO) adsorbed on the chiral Cu(643)R surface. Using spin- and momentum-resolved photoelectron spectroscopy, we detect a spin-dependent electron transmission through a single layer of 3-MCHO molecules that depends on all three components of the electrons' spin. Crucially, exchanging the enantiomers alters the electrons' spin component oriented parallel to the terraces of the Cu(643)R surface. The findings are attributed to the enantiomer-specific adsorption configuration on the surface. This opens the intriguing opportunity to selectively tune CISS by the enantiospecific molecule-surface interaction in all-chiral heterostructures.

8.
Cells ; 11(3)2022 01 27.
Article in English | MEDLINE | ID: mdl-35159244

ABSTRACT

Tendon disorders represent a very common pathology in today's population, and tendinopathies that account 30% of tendon-related injuries, affect yearly millions of people which in turn cause huge socioeconomic and health repercussions worldwide. Inflammation plays a prominent role in the development of tendon pathologies, and advances in understanding the underlying mechanisms during the inflammatory state have provided additional insights into its potential role in tendon disorders. Different cell compartments, in combination with secreted immune modulators, have shown to control and modulate the inflammatory response during tendinopathies. Stromal compartment represented by tenocytes has shown to display an important role in orchestrating the inflammatory response during tendon injuries due to the interplay they exhibit with the immune-sensing and infiltrating compartments, which belong to resident and recruited immune cells. The use of stem cells or their derived secretomes within the regenerative medicine field might represent synergic new therapeutical approaches that can be used to tune the reaction of immune cells within the damaged tissues. To this end, promising opportunities are headed to the stimulation of macrophages polarization towards anti-inflammatory phenotype together with the recruitment of stem cells, that possess immunomodulatory properties, able to infiltrate within the damaged tissues and improve tendinopathies resolution. Indeed, the comprehension of the interactions between tenocytes or stem cells with the immune cells might considerably modulate the immune reaction solving hence the inflammatory response and preventing fibrotic tissue formation. The purpose of this review is to compare the roles of distinct cell compartments during tendon homeostasis and injury. Furthermore, the role of immune cells in this field, as well as their interactions with stem cells and tenocytes during tendon regeneration, will be discussed to gain insights into new ways for dealing with tendinopathies.


Subject(s)
Immune Reconstitution , Tendinopathy , Tendon Injuries , Humans , Tendon Injuries/therapy , Tendons , Tenocytes
9.
Eur J Immunol ; 51(12): 3176-3185, 2021 12.
Article in English | MEDLINE | ID: mdl-34626426

ABSTRACT

The soluble cytoplasmic tail of CD45 (ct-CD45) is a cleavage fragment of CD45, that is generated during the activation of human phagocytes. Upon release to the extracellular space, ct-CD45 binds to human T cells and inhibits their activation in vitro. Here, we studied the potential role of TLR4 as a receptor for ct-CD45. Treatment of Jurkat TLR4/CD14 reporter cells with ct-CD45 induced the upregulation of the reporter gene NFκB-eGFP and could be blocked by inhibitors of TLR4 signaling. Conversely, ct-CD45 did not promote the NFκB-controlled eGFP induction in reporter cells expressing TLR1, TLR2, and TLR6 transgenes and did not lead to the activation of the transcription factors NFκB, AP-1, and NFAT in a Jurkat reporter cell line expressing endogenous TLR5. Moreover, ct-CD45 binds to recombinant TLR4 in an in vitro assay and this association was reduced in the presence of oxidized 1-palmitoyl-2-arachidonyl-sn-glycero-3-phosphorylcholine. Blockade of TLR4 with mAb HTA125 partially reversed the ct-CD45-mediated inhibition of T-cell proliferation. Interestingly, targeting of TLR4 with mAb W7C11 also suppressed T-cell proliferation. In summary, the results of this study demonstrate that ct-CD45 acts via a noncanonical TLR4 activation pathway on T cells, which modulates TCR signaling.


Subject(s)
Cell Proliferation , Leukocyte Common Antigens/immunology , Lymphocyte Activation , Signal Transduction/immunology , T-Lymphocytes/immunology , Toll-Like Receptor 4/immunology , Humans , Jurkat Cells
10.
Front Immunol ; 12: 697840, 2021.
Article in English | MEDLINE | ID: mdl-34394090

ABSTRACT

Monocytes are antigen-presenting cells (APCs) that play diverse roles in promoting or regulating inflammatory responses, but their role in T cell stimulation is not well defined. In inflammatory conditions, monocytes frequently show increased expression of CD169/Siglec-1, a type-I interferon (IFN-I)-regulated protein. However, little is known about the phenotype and function of these CD169+ monocytes. Here, we have investigated the phenotype of human CD169+ monocytes in different diseases, their capacity to activate CD8+ T cells, and the potential for a targeted-vaccination approach. Using spectral flow cytometry, we detected CD169 expression by CD14+ CD16- classical and CD14+ CD16+ intermediate monocytes and unbiased analysis showed that they were distinct from dendritic cells, including the recently described CD14-expressing DC3. CD169+ monocytes expressed higher levels of co-stimulatory and HLA molecules, suggesting an increased activation state. IFNα treatment highly upregulated CD169 expression on CD14+ monocytes and boosted their capacity to cross-present antigen to CD8+ T cells. Furthermore, we observed CD169+ monocytes in virally-infected patients, including in the blood and bronchoalveolar lavage fluid of COVID-19 patients, as well as in the blood of patients with different types of cancers. Finally, we evaluated two CD169-targeting nanovaccine platforms, antibody-based and liposome-based, and we showed that CD169+ monocytes efficiently presented tumor-associated peptides gp100 and WT1 to antigen-specific CD8+ T cells. In conclusion, our data indicate that CD169+ monocytes are activated monocytes with enhanced CD8+ T cell stimulatory capacity and that they emerge as an interesting target in nanovaccine strategies, because of their presence in health and different diseases.


Subject(s)
Antigen Presentation/immunology , CD8-Positive T-Lymphocytes/immunology , Lymphocyte Activation/immunology , Monocytes/immunology , Sialic Acid Binding Ig-like Lectin 1/metabolism , COVID-19/immunology , Carcinoma, Pancreatic Ductal/immunology , Cells, Cultured , Flow Cytometry , Humans , Influenza, Human/immunology , Interferon-alpha/pharmacology , Lipopolysaccharide Receptors/metabolism , Lung Neoplasms/immunology , Pancreatic Neoplasms/immunology , SARS-CoV-2/immunology
11.
Oxid Med Cell Longev ; 2021: 5533793, 2021.
Article in English | MEDLINE | ID: mdl-34122722

ABSTRACT

Phenolic compounds of red wine powder (RWP) extracted from the Italian red wine Aglianico del Vulture have been investigated for the potential immunomodulatory and anti-inflammatory capacity on human macrophages. These compounds reduce the secretion of IL-1ß, IL-6, and TNF-α proinflammatory cytokines and increase the release of IL-10 anti-inflammatory cytokine induced by lipopolysaccharide (LPS). In addition, RWP restores Annexin A1 levels, thus involving activation of proresolutive pathways. Noteworthy, RWP lowers NF-κB protein levels, promoter activity, and nuclear translocation. As a consequence of NF-κB inhibition, reduced promoter activities of SLC25A1-encoding the mitochondrial citrate carrier (CIC)-and ATP citrate lyase (ACLY) metabolic genes have been observed. CIC, ACLY, and citrate are components of the citrate pathway: in LPS-activated macrophages, the mitochondrial citrate is exported by CIC into the cytosol where it is cleaved by ACLY in oxaloacetate and acetyl-CoA, precursors for ROS, NO·, and PGE2 inflammatory mediators. We identify the citrate pathway as a RWP target in carrying out its anti-inflammatory activity since RWP reduces CIC and ACLY protein levels, ACLY enzymatic activity, the cytosolic citrate concentration, and in turn ROS, NO·, PGE2, and histone acetylation levels. Overall findings suggest that RWP potentially restores macrophage homeostasis by suppressing inflammatory pathways and activating proresolutive processes.


Subject(s)
Citric Acid/metabolism , Hydroxybenzoates/therapeutic use , Macrophages/drug effects , NF-kappa B/metabolism , Wine/analysis , Humans , Hydroxybenzoates/pharmacology , Transfection
12.
Front Immunol ; 12: 817604, 2021.
Article in English | MEDLINE | ID: mdl-35087538

ABSTRACT

Toll-like receptors (TLRs) are primary pattern recognition receptors (PRRs), which recognize conserved microbial components. They play important roles in innate immunity but also in the initiation of adaptive immune responses. Impurities containing TLR ligands are a frequent problem in research but also for the production of therapeutics since TLR ligands can exert strong immunomodulatory properties even in minute amounts. Consequently, there is a need for sensitive tools to detect TLR ligands with high sensitivity and specificity. Here we describe the development of a platform based on a highly sensitive NF-κB::eGFP reporter Jurkat JE6-1 T cell line for the detection of TLR ligands. Ectopic expression of TLRs and their coreceptors and CRISPR/Cas9-mediated deletion of endogenously expressed TLRs was deployed to generate reporter cell lines selectively expressing functional human TLR2/1, TLR2/6, TLR4 or TLR5 complexes. Using well-defined agonists for the respective TLR complexes we could demonstrate high specificity and sensitivity of the individual reporter lines. The limit of detection for LPS was below 1 pg/mL and ligands for TLR2/1 (Pam3CSK4), TLR2/6 (Fsl-1) and TLR5 (flagellin) were detected at concentrations as low as 1.0 ng/mL, 0.2 ng/mL and 10 pg/mL, respectively. We showed that the JE6-1 TLR reporter cells have the utility to characterize different commercially available TLR ligands as well as more complex samples like bacterially expressed proteins or allergen extracts. Impurities in preparations of microbial compounds as well as the lack of specificity of detection systems can lead to erroneous results and currently there is no consensus regarding the involvement of TLRs in the recognition of several molecules with proposed immunostimulatory functions. This reporter system represents a highly suitable tool for the definition of structural requirements for agonists of distinct TLR complexes.


Subject(s)
Bacteria/metabolism , Bacterial Infections/metabolism , Bacterial Infections/microbiology , Bacterial Physiological Phenomena , Biological Assay/methods , Toll-Like Receptors/metabolism , Biosensing Techniques , CRISPR-Cas Systems , Cell Line , Gene Expression , Genes, Reporter , Humans , Ligands , Multigene Family , Reproducibility of Results , Sensitivity and Specificity , Toll-Like Receptors/genetics
13.
J Phys Chem C Nanomater Interfaces ; 124(43): 23579-23587, 2020 Oct 29.
Article in English | MEDLINE | ID: mdl-33193941

ABSTRACT

The high flexibility of organic molecules offers great potential for designing the optical properties of optically active materials for the next generation of optoelectronic and photonic applications. However, despite successful implementations of molecular materials in today's display and photovoltaic technology, many fundamental aspects of the light-to-charge conversion in molecular materials have still to be uncovered. Here, we focus on the ultrafast dynamics of optically excited excitons in C60 thin films depending on the molecular coverage and the light polarization of the optical excitation. Using time- and momentum-resolved photoemission with femtosecond extreme ultraviolet (fs-XUV) radiation, we follow the exciton dynamics in the excited states while simultaneously monitoring the signatures of the excitonic charge character in the renormalization of the molecular valence band structure. Optical excitation with visible light results in the instantaneous formation of charge-transfer (CT) excitons, which transform stepwise into Frenkel-like excitons at lower energies. The number and energetic position of the CT and Frenkel-like excitons within this cascade process are independent of the molecular coverage and the light polarization of the optical excitation. In contrast, the depopulation times of the CT and Frenkel-like excitons depend on the molecular coverage, while the excitation efficiency of CT excitons is determined by the light polarization. Our comprehensive study reveals the crucial role of CT excitons for the excited-state dynamics of homomolecular fullerene materials and thin films.

14.
Proc Natl Acad Sci U S A ; 117(44): 27528-27539, 2020 11 03.
Article in English | MEDLINE | ID: mdl-33067394

ABSTRACT

Priming of CD8+ T cells by dendritic cells (DCs) is crucial for the generation of effective antitumor immune responses. Here, we describe a liposomal vaccine carrier that delivers tumor antigens to human CD169/Siglec-1+ antigen-presenting cells using gangliosides as targeting ligands. Ganglioside-liposomes specifically bound to CD169 and were internalized by in vitro-generated monocyte-derived DCs (moDCs) and macrophages and by ex vivo-isolated splenic macrophages in a CD169-dependent manner. In blood, high-dimensional reduction analysis revealed that ganglioside-liposomes specifically targeted CD14+ CD169+ monocytes and Axl+ CD169+ DCs. Liposomal codelivery of tumor antigen and Toll-like receptor ligand to CD169+ moDCs and Axl+ CD169+ DCs led to cytokine production and robust cross-presentation and activation of tumor antigen-specific CD8+ T cells. Finally, Axl+ CD169+ DCs were present in cancer patients and efficiently captured ganglioside-liposomes. Our findings demonstrate a nanovaccine platform targeting CD169+ DCs to drive antitumor T cell responses.


Subject(s)
Cancer Vaccines/administration & dosage , Dendritic Cells/immunology , Macrophages/immunology , Neoplasms/therapy , Vaccination/methods , Antigens, Neoplasm/administration & dosage , Antigens, Neoplasm/immunology , CD8-Positive T-Lymphocytes/immunology , Cancer Vaccines/immunology , Cross-Priming/immunology , Dendritic Cells/metabolism , Gangliosides , Humans , Immunogenicity, Vaccine , Leukocytes, Mononuclear , Liposomes , Macrophages/metabolism , Neoplasms/immunology , Primary Cell Culture , Proto-Oncogene Proteins/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Sialic Acid Binding Ig-like Lectin 1/metabolism , THP-1 Cells , Vaccines, Subunit/administration & dosage , Vaccines, Subunit/immunology , Axl Receptor Tyrosine Kinase
15.
Commun Biol ; 3(1): 621, 2020 10 27.
Article in English | MEDLINE | ID: mdl-33110194

ABSTRACT

Iron is essential for living cells. Uptake of iron-loaded transferrin by the transferrin receptor 1 (CD71, TFR) is a major but not sufficient mechanism and an alternative iron-loaded ligand for CD71 has been assumed. Here, we demonstrate that CD71 utilizes heme-albumin as cargo to transport iron into human cells. Binding and endocytosis of heme-albumin via CD71 was sufficient to promote proliferation of various cell types in the absence of transferrin. Growth and differentiation of cells induced by heme-albumin was dependent on heme-oxygenase 1 (HO-1) function and was accompanied with an increase of the intracellular labile iron pool (LIP). Import of heme-albumin via CD71 was further found to contribute to the efficacy of albumin-based drugs such as the chemotherapeutic Abraxane. Thus, heme-albumin/CD71 interaction is a novel route to transport nutrients or drugs into cells and adds to the emerging function of CD71 as a scavenger receptor.


Subject(s)
Albumins/metabolism , Antigens, CD/metabolism , Heme Oxygenase-1/metabolism , Iron/metabolism , Receptors, Transferrin/metabolism , Antigens, CD/genetics , Biological Transport , Cell Line , Cell Proliferation , Culture Media , Gene Expression Regulation , Heme Oxygenase-1/genetics , Humans , Receptors, Transferrin/genetics
16.
Immunohorizons ; 4(4): 165-177, 2020 04 13.
Article in English | MEDLINE | ID: mdl-32284314

ABSTRACT

Iron uptake via the transferrin receptor (CD71) is a pivotal mechanism for T cell proliferation. Yet, it is incompletely understood if targeting of CD71 also affects the differentiation and functional polarization of primary human T cells. In this study, we demonstrate that inhibition of iron ingestion with blocking mAbs against CD71 induces nonproliferating T cells, which release high amounts of IL-2. Targeting of CD71 with blocking or nonblocking mAbs did not alter major signaling pathways and the activation of the transcription factors NF-κB, NFAT, or AP-1 as analyzed in Jurkat T cells. Growth arrest in iron-deficient (Fe-def) T cells was prevented upon addition of exogenous iron in the form of ferric ammonium citrate but was not reversible by exogenous IL-2. Surprisingly, protein synthesis was found to be intact in Fe-def T cells as demonstrated by comparable levels of CD69 upregulation and cytokine production with iron-sufficient T cells upon stimulation with CD3 plus CD28 mAbs. Indeed, high amounts of IL-2 were detectable in the supernatant of Fe-def T cells, which was accompanied with a reduced cell surface expression of IL-2R. When we used such Fe-def T cells in allogeneic MLRs, we observed that these cells acquired an accessory cell function and stimulated the proliferation of bystander T cells by providing IL-2. Thus, the results of our study demonstrate that iron deprivation causes nonproliferating, altruistic T cells that can help and stimulate other immune cells by providing cytokines such as IL-2.


Subject(s)
Antibodies, Monoclonal, Murine-Derived/pharmacology , Cell Proliferation/drug effects , Iron Deficiencies , Signal Transduction/drug effects , T-Lymphocytes, Helper-Inducer/immunology , Animals , Antibodies, Monoclonal, Murine-Derived/immunology , Antigens, CD/immunology , Blood Donors , CD28 Antigens/antagonists & inhibitors , CD28 Antigens/immunology , CD3 Complex/antagonists & inhibitors , CD3 Complex/immunology , Female , Ferric Compounds/pharmacology , Fetal Blood/cytology , Humans , Interleukin-2/metabolism , Jurkat Cells , Mice , Quaternary Ammonium Compounds/pharmacology , Receptors, Transferrin/antagonists & inhibitors , Receptors, Transferrin/immunology
17.
Front Immunol ; 10: 1533, 2019.
Article in English | MEDLINE | ID: mdl-31333664

ABSTRACT

Viral replication is a process that involves an extremely high turnover of cellular molecules. Since viruses depend on the host cell to obtain the macromolecules needed for their proper replication, they have evolved numerous strategies to shape cellular metabolism and the biosynthesis machinery of the host according to their specific needs. Technologies for the rigorous analysis of metabolic alterations in cells have recently become widely available and have greatly expanded our knowledge of these crucial host-pathogen interactions. We have learned that most viruses enhance specific anabolic pathways and are highly dependent on these alterations. Since uninfected cells are far more plastic in their metabolism, targeting of the virus-induced metabolic alterations is a promising strategy for specific antiviral therapy and has gained great interest recently. In this review, we summarize the current advances in our understanding of metabolic adaptations during viral infections, with a particular focus on the utilization of this information for therapeutic application.


Subject(s)
Host-Pathogen Interactions/immunology , Virus Diseases/immunology , Virus Physiological Phenomena/immunology , Virus Replication/immunology , Viruses/immunology , Humans , Virus Diseases/therapy
18.
Cancers (Basel) ; 11(2)2019 Feb 05.
Article in English | MEDLINE | ID: mdl-30764534

ABSTRACT

The lack of tumor-reactive T cells is one reason why immune checkpoint inhibitor therapies still fail in a significant proportion of melanoma patients. A vaccination that induces melanoma-specific T cells could potentially enhance the efficacy of immune checkpoint inhibitors. Here, we describe a vaccination strategy in which melanoma antigens are targeted to mouse and human CD169 and thereby induce strong melanoma antigen-specific T cell responses. CD169 is a sialic acid receptor expressed on a subset of mouse splenic macrophages that captures antigen from the blood and transfers it to dendritic cells (DCs). In human and mouse spleen, we detected CD169⁺ cells at an equivalent location using immunofluorescence microscopy. Immunization with melanoma antigens conjugated to antibodies (Abs) specific for mouse CD169 efficiently induced gp100 and Trp2-specific T cell responses in mice. In HLA-A2.1 transgenic mice targeting of the human MART-1 peptide to CD169 induced strong MART-1-specific HLA-A2.1-restricted T cell responses. Human gp100 peptide conjugated to Abs specific for human CD169 bound to CD169-expressing monocyte-derived DCs (MoDCs) and resulted in activation of gp100-specific T cells. Together, these data indicate that Ab-mediated antigen targeting to CD169 is a potential strategy for the induction of melanoma-specific T cell responses in mice and in humans.

19.
Proc Natl Acad Sci U S A ; 115(30): E7158-E7165, 2018 07 24.
Article in English | MEDLINE | ID: mdl-29987044

ABSTRACT

Rhinoviruses (RVs) are responsible for the majority of upper airway infections; despite their high prevalence and the resulting economic burden, effective treatment is lacking. We report here that RV induces metabolic alterations in host cells, which offer an efficient target for antiviral intervention. We show that RV-infected cells rapidly up-regulate glucose uptake in a PI3K-dependent manner. In parallel, infected cells enhance the expression of the PI3K-regulated glucose transporter GLUT1. In-depth metabolomic analysis of RV-infected cells revealed a critical role of glucose mobilization from extracellular and intracellular pools via glycogenolysis for viral replication. Infection resulted in a highly anabolic state, including enhanced nucleotide synthesis and lipogenesis. Consistently, we observed that glucose deprivation from medium and via glycolysis inhibition by 2-deoxyglucose (2-DG) potently impairs viral replication. Metabolomic analysis showed that 2-DG specifically reverts the RV-induced anabolic reprogramming. In addition, treatment with 2-DG inhibited RV infection and inflammation in a murine model. Thus, we demonstrate that the specific metabolic fingerprint of RV infection can be used to identify new targets for therapeutic intervention.


Subject(s)
Picornaviridae Infections/metabolism , Rhinovirus/physiology , Virus Replication/physiology , Animals , Deoxyglucose/pharmacology , Female , Glucose Transporter Type 1/genetics , Glucose Transporter Type 1/metabolism , Lipogenesis/drug effects , Lipogenesis/genetics , Mice , Nucleotides/biosynthesis , Nucleotides/genetics , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Picornaviridae Infections/drug therapy , Picornaviridae Infections/genetics , Picornaviridae Infections/pathology , Virus Replication/drug effects
20.
Mol Oncol ; 12(4): 514-528, 2018 04.
Article in English | MEDLINE | ID: mdl-29419930

ABSTRACT

The interferon-inducible transcription factor STAT1 is a tumor suppressor in various malignancies. We investigated sex-specific STAT1 functions in colitis and colitis-associated colorectal cancer (CRC) using mice with specific STAT1 deletion in intestinal epithelial cells (STAT1∆IEC ). Male but not female STAT1∆IEC mice were more resistant to DSS-induced colitis than sex-matched STAT1flox/flox controls and displayed reduced intraepithelial infiltration of CD8+ TCRαß+ granzyme B+ T cells. Moreover, DSS treatment failed to induce expression of T-cell-attracting chemokines in intestinal epithelial cells of male but not of female STAT1∆IEC mice. Application of the AOM-DSS protocol for induction of colitis-associated CRC resulted in increased intestinal tumor load in male but not in female STAT1∆IEC mice. A sex-specific stratification of human CRC patients corroborated the data obtained in mice and revealed that reduced tumor cell-intrinsic nuclear STAT1 protein expression is a poor prognostic factor in men but not in women. These data demonstrate that epithelial STAT1 is a male-specific tumor suppressor in CRC of mice and humans.


Subject(s)
Colitis/metabolism , Colorectal Neoplasms/metabolism , STAT1 Transcription Factor/metabolism , Sex Characteristics , Tumor Suppressor Proteins/metabolism , Animals , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/pathology , Chemokines/biosynthesis , Colitis/chemically induced , Colitis/pathology , Colorectal Neoplasms/chemically induced , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Dextran Sulfate/toxicity , Female , Gene Expression Regulation, Neoplastic , Humans , Male , Mice , Mice, Transgenic , Receptors, Antigen, T-Cell, alpha-beta/metabolism , STAT1 Transcription Factor/genetics , Tumor Suppressor Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...