Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Cell Death Differ ; 23(2): 270-8, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26184909

ABSTRACT

Ferroptosis is a form of regulated non-apoptotic cell death that has been implicated in several disease contexts. A better understanding of the ferroptotic death mechanism could lead to the development of new therapeutics for degenerative diseases, and a better understanding of how to induce ferroptosis in specific tumor contexts. We performed an unbiased genome-wide siRNA screen to find genetic suppressors of ferroptosis. We determined that loss of CARS, the cysteinyl-tRNA synthetase, suppresses ferroptosis induced by erastin, which inhibits the cystine-glutamate antiporter known as system xc(-). Knockdown of CARS inhibited erastin-induced death by preventing the induction of lipid reactive oxygen species, without altering iron homeostasis. Knockdown of CARS led to the accumulation of cystathionine, a metabolite on the transsulfuration pathway, and upregulated genes associated with serine biosynthesis and transsulfuration. In addition, inhibition of the transsulfuration pathway resensitized cells to erastin, even after CARS knockdown. These studies demonstrate a new mechanism of resistance to ferroptosis and may lead to strategies for inducing and suppressing ferroptosis in diverse contexts.


Subject(s)
Amino Acyl-tRNA Synthetases/genetics , Apoptosis , Amino Acyl-tRNA Synthetases/metabolism , Animals , Antineoplastic Agents/pharmacology , Biosynthetic Pathways , Cystine/metabolism , Drug Resistance, Neoplasm , Gene Knockdown Techniques , Glutamic Acid/pharmacology , Humans , PC12 Cells , Piperazines/pharmacology , Rats , Reactive Oxygen Species/metabolism , Serine/biosynthesis , Signal Transduction
2.
Trends Biotechnol ; 18(11): 449-55, 2000 Nov.
Article in English | MEDLINE | ID: mdl-11058785

ABSTRACT

New methods enable the identification of compounds that both induce a specific cellular state and lead to identification of proteins that regulate that state. Together, developments in three critical areas: chemical diversity, phenotype-based screening and target identification, enable the systematic application of this chemical genetic approach to almost any biological problem or disease process.


Subject(s)
Molecular Biology/trends , Animals , Biopolymers , Biotechnology , Chemistry, Organic , Genetic Markers , Genetic Testing , Humans , Models, Genetic , Organic Chemistry Phenomena , Phenotype
3.
Org Lett ; 2(18): 2869-71, 2000 Sep 07.
Article in English | MEDLINE | ID: mdl-10964386

ABSTRACT

[rection: see text] The first regioselective alpha-deprotonation and functionalization of electron-deficient allenamines are described here. The acidities of alpha- and gamma-allenic protons of these allenamides are readily differentiated using strong bases, thereby allowing regioselective substitutions at either the alpha- or gamma-allenic position. A specific synthetic application of the novel alpha-substituted allenamides in intramolecular Pauson-Khand-type cycloadditions is also described here.

4.
Nat Rev Genet ; 1(2): 116-25, 2000 Nov.
Article in English | MEDLINE | ID: mdl-11253651

ABSTRACT

Chemical genetics is the study of gene-product function in a cellular or organismal context using exogenous ligands. In this approach, small molecules that bind directly to proteins are used to alter protein function, enabling a kinetic analysis of the in vivo consequences of these changes. Recent advances have strongly enhanced the power of exogenous ligands such that they can resemble genetic mutations in terms of their general applicability and target specificity. The growing sophistication of this approach raises the possibility of its application to any biological process.


Subject(s)
Genes , Molecular Biology/methods , Peptide Library , Proteins/genetics , Animals , Databases as Topic , Gene Library , Ligands
5.
Chem Biol ; 6(2): 71-83, 1999 Feb.
Article in English | MEDLINE | ID: mdl-10021420

ABSTRACT

BACKGROUND: Fully adapting a forward genetic approach to mammalian systems requires efficient methods to alter systematically gene products without prior knowledge of gene sequences, while allowing for the subsequent characterization of these alterations. Ideally, these methods would also allow function to be altered in a temporally controlled manner. RESULTS: We report the development of a miniaturized cell-based assay format that enables a genetic-like approach to understanding cellular pathways in mammalian systems using small molecules, rather than mutations, as the source of gene-product alterations. This whole-cell immunodetection assay can sensitively detect changes in specific cellular macromolecules in high-density arrays of mammalian cells. Furthermore, it is compatible with screening large numbers of small molecules in nanoliter to microliter culture volumes. We refer to this assay format as a 'cytoblot', and demonstrate the use of cytoblotting to monitor biosynthetic processes such as DNA synthesis, and post-translational processes such as acetylation and phosphorylation. Finally, we demonstrate the applicability of these assays to natural-product screening through the identification of marine sponge extracts exhibiting genotype-specific inhibition of 5-bromodeoxyuridine incorporation and suppression of the anti-proliferative effect of rapamycin. CONCLUSIONS: We show that cytoblots can be used for high-throughput screening of small molecules in cell-based assays. Together with small-molecule libraries, the cytoblot assay can be used to perform chemical genetic screens analogous to those used in classical genetics and thus should be applicable to understanding a wide variety of cellular processes, especially those involving post-transitional modifications.


Subject(s)
Protein Processing, Post-Translational/genetics , Acetylation , Animals , Antimetabolites , Blotting, Western , Bromodeoxyuridine , Cell Line , Enzyme-Linked Immunosorbent Assay , Histones/chemistry , Histones/genetics , Lung/cytology , Mink , Phosphorylation , Porifera/chemistry , Protein Biosynthesis , Proteins/metabolism , Sirolimus/antagonists & inhibitors , Sirolimus/pharmacology
6.
Curr Biol ; 8(13): 761-70, 1998 Jun 18.
Article in English | MEDLINE | ID: mdl-9651680

ABSTRACT

BACKGROUND: Transforming growth factor Beta (TGF-Beta) arrests many cell types in the G1 phase of the cell and upregulates plasminogen activator inhibitor 1 (PAI-1). The type 1 (TGF-Beta RI) an II (TGF-Beta RII) TGF-Beta receptors mediate these and other effects of TGF-Beta on target cells. TGF-Beta initially binds to TGF-Beta RII and subsequently TGF-Beta RI is recruited to form a heteromeric complex. TGF-Beta RI phosphorylates the downstream effectors Smad2 and Smad3, leading to their translocation into the nucleus. Here, we explored the role of receptor oligomerization in TGF-Beta signaling. RESULTS: We constructed fusion proteins containing receptor cytoplasmic tails linked to binding domains for small-molecule dimerizers. In COS-1 cells, recruitment of a soluble TGF-Beta RII tail to a myristoylated TGF-Beta RI tail promoted Smad2 nuclear translocation. In mink lung cells, homo-oligomerization of a myristoylated TGF-Beta Ri tail in presence of a myristoylated TGF-Beta RII tail activated the PAI-1 promoter. Oligomerization of an acidic mutant of the TGF-Beta RI tail in absence of TGF-Beta RII activated the PAI-A promoter and inhibited the growth of mink lung cells. CONCLUSIONS: Non-toxic, small molecules designed to oligomerize cytoplasmic tails of TGF-Beta receptors at the plasma membrane can activate TGF-Beta signaling. Although TGF-Beta normally signals through two receptors that are both necessary for signaling, in one small-molecule system, a dimerizer activates signaling through a single type of receptor that is sufficient to induce TGF-Beta signaling. These methods of activating TGF-Beta signaling could be extended to signaling pathways of other TGF-Beta superfamily members such as activin and the bone morphogenetic proteins.


Subject(s)
Activin Receptors, Type I , Molecular Probes/metabolism , Protein Serine-Threonine Kinases/physiology , Receptors, Transforming Growth Factor beta/physiology , Signal Transduction/physiology , Transforming Growth Factor beta/physiology , Animals , COS Cells , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Dimerization , Green Fluorescent Proteins , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Mice , Myristates/metabolism , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/metabolism , Receptor, Transforming Growth Factor-beta Type I , Receptor, Transforming Growth Factor-beta Type II , Receptors, Transforming Growth Factor beta/chemistry , Receptors, Transforming Growth Factor beta/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Smad2 Protein , Trans-Activators/genetics , Trans-Activators/metabolism , Transforming Growth Factor beta/metabolism
7.
Chem Biol ; 5(7): 385-95, 1998 Jul.
Article in English | MEDLINE | ID: mdl-9662508

ABSTRACT

BACKGROUND: Growth arrest in many cell types is triggered by transforming growth factor beta (TGF-beta), which signals through two TGF-beta receptors (type I, TGF-beta RI, and type II, TGF-beta). In the signaling pathway, TGF-beta binds to the extracellular domain of TGF-betaRII, which can then transphosphorylate TGF-betaRI in its glycine/serine (GS)-rich box. Activated TGF-betaRI phosphorylates two downstream effectors, Smad2 and Smad3, leading to their translocation into the nucleus. Cell growth is arrested and plasminogen activator inhibitor 1 (PAI-1) is upregulated. We investigated the role of the immunophilin FKBP12, which can bind to the GS box of TGF-betaRI, in TGF-beta signaling. RESULTS: Overexpression of myristoylated TGF-betaRI and TGF-betaRII cytoplasmic tails caused constitutive nuclear translocation of a green-fluorescent-protein-Smad2 construct in COS-1 cells, and constitutive activation of a PAI-1 reporter plasmid in mink lung cells. Fusing FKBP12 to TGF-betaRI resulted in repression of autosignaling that could be alleviated by FK506M or rapamycin (two small molecules that can bind to FKBP12). Mutation of the FKBP12-binding site in the FKBP1-TGF-betaRI fusion protein restored constitutive signaling. An acidic mutation in the FKBP12-TGF-betaRI protein allowed FKBP12 antagonists to activate signaling in the absence of TGF-betaRII. Further mutations in the TGF-betaRI FKBP12-binding site resulted in TGF-beta signaling that was independent of both TGF-betaRII and FKBP12 antagonists. CONCLUSIONS: Fusing FKBP12 to TGF-betaRI results in a novel receptor that is activated by small molecule FKBP12 antagonists. These results suggest that FKBP12 binding to TGF-betaRI is inhibitory and that FKBP12 plays a role in inhibiting TGF-beta superfamily signals.


Subject(s)
Activin Receptors, Type I , Carrier Proteins/antagonists & inhibitors , DNA-Binding Proteins/antagonists & inhibitors , Heat-Shock Proteins/antagonists & inhibitors , Protein Serine-Threonine Kinases/metabolism , Receptors, Transforming Growth Factor beta/metabolism , Recombinant Fusion Proteins/metabolism , Signal Transduction , Transforming Growth Factor beta/physiology , Animals , COS Cells/drug effects , Carrier Proteins/genetics , DNA-Binding Proteins/genetics , Fluorescent Antibody Technique , Heat-Shock Proteins/genetics , Immunosuppressive Agents/pharmacology , Lung/drug effects , Lung/metabolism , Mink , Polyenes/pharmacology , Protein Serine-Threonine Kinases/drug effects , Receptor, Transforming Growth Factor-beta Type I , Receptors, Transforming Growth Factor beta/drug effects , Recombinant Fusion Proteins/drug effects , Repressor Proteins , Sirolimus , Tacrolimus/pharmacology , Tacrolimus Binding Proteins , Transforming Growth Factor beta/drug effects
8.
J Biol Chem ; 273(5): 2926-30, 1998 Jan 30.
Article in English | MEDLINE | ID: mdl-9446604

ABSTRACT

The assembly of the CD-95 (Fas/Apo-1) receptor death-inducing signaling complex occurs in a hierarchical manner; the death domain of CD-95 binds to the corresponding domain in the adapter molecule Fas-associated death domain (FADD) Mort-1, which in turn recruits the zymogen form of the death protease caspase-8 (FLICE/Mach-1) by a homophilic interaction involving the death effector domains. Immediately after recruitment, the single polypeptide FLICE zymogen is proteolytically processed to the active dimeric species composed of large and small catalytic subunits. Since all caspases cleave their substrates after Asp residues and are themselves processed from the single-chain zymogen to the two-chain active enzyme by cleavage at internal Asp residues, it follows that an upstream caspase can process a downstream zymogen. However, since FLICE represents the most apical caspase in the Fas pathway, its mode of activation has been enigmatic. We hypothesized that the FLICE zymogen possesses intrinsic enzymatic activity such that when approximated, it autoprocesses to the active protease. Support for this was provided by (i) the synthesis of chimeric Fpk3FLICE molecules that can be oligomerized in vivo by the synthetic cell-permeable dimerizer FK1012H2. Cells transfected with Fpk3FLICE underwent apoptosis after exposure to FK1012H2; (ii) the creation of a nonprocessable zymogen form of FLICE that retained low but detectable protease activity.


Subject(s)
Adaptor Proteins, Signal Transducing , Apoptosis , Caspases , Cysteine Endopeptidases/metabolism , Enzyme Precursors/metabolism , Carrier Proteins/metabolism , Caspase 8 , Caspase 9 , Enzyme Activation , Fas-Associated Death Domain Protein , Models, Biological , Protein Binding , Signal Transduction , fas Receptor
9.
Anal Chem ; 68(11): 1905-9, 1996 Jun 01.
Article in English | MEDLINE | ID: mdl-21619101

ABSTRACT

A specific chromatographic LC/MS/MS assay is described for the confirmatory identification of residues of sarafloxacin, an arylfluoroquinolone antibacterial agent, in catfish tissue. This confirmatory method takes advantage of the specificity provided by sample preparation, liquid chromatography, and tandem mass spectrometry. This kind of multidimensional analysis is commonly used in environmental, pharmacokinetic, residue, and other studies. However, we demonstrate the addition of a previously unreported criterion, the use of ion ratio ranges from the tandem mass spectrometry (MS/MS) experiment as an aid in confirmation. Using the described method, we were able to achieve MS/MS product ion ratios with <7% variation during 1 day of analysis for over 25 injections. We believe the addition of this criterion will increase the scientific certainty of the confirmatory method.

10.
J Med Chem ; 33(12): 3138-42, 1990 Dec.
Article in English | MEDLINE | ID: mdl-2258900

ABSTRACT

5-Bromotryptophan (5-BrTrp) is the most potent amino acid derivative reported in the literature to inhibit the gelation of hemoglobin S (from sickle cell anemia patients). Trp-Trp is also more potent than Trp as an antigelation agent. Therefore, we have prepared a series of dipeptides containing 5-BrTrp and evaluated the antigelation activity. 5-BrTrp-5-BrTrp is the most potent, i.e., 5.9 times the activity of Trp, followed by 5-BrTrp-Trp and then Trp-5-BrTrp. This improved antigelation potency for 5-BrTrp-5-BrTrp and 5-BrTrp-Trp is very significant and will be pursued further as lead compounds with potential for sickle cell anemia.


Subject(s)
Anemia, Sickle Cell/blood , Hemoglobin, Sickle/chemistry , Tryptophan/analogs & derivatives , Anemia, Sickle Cell/drug therapy , Animals , Dipeptides/chemical synthesis , Dipeptides/pharmacology , Gels , Humans , Mice , Motor Activity/drug effects , Structure-Activity Relationship , Tryptophan/chemical synthesis , Tryptophan/chemistry , Tryptophan/pharmacology
11.
Bull World Health Organ ; 58(4): 663-4, 1980.
Article in English | MEDLINE | ID: mdl-6969138

ABSTRACT

The first known case of cholera to be contracted in Australia during the seventh pandemic occurred in Queensland in 1977. There was no record of recent travel abroad by the patient, or of her having been in contact with persons suffering from gastroenteritis. Vibrio cholerae, biotype eltor, serotype Inaba, phage-type 2, was the causative microorganism. This case is unique in that the microbiological diagnosis was based on the identification of an isolate from venous blood. This indicates that the patient was bacteraemic, an observation not previously reported. The incident shows the importance of routine screening of faecal specimens for V. cholerae, as well as other enteropathogens.


Subject(s)
Cholera/diagnosis , Cholera/microbiology , Female , Humans , Middle Aged , Vibrio cholerae/isolation & purification
13.
Bull. W.H.O. (Print) ; 58(4): 663-664, 1980.
Article in English | WHO IRIS | ID: who-262023

Subject(s)
Research
SELECTION OF CITATIONS
SEARCH DETAIL
...