Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
ACS ES T Water ; 3(11): 3667-3675, 2023 Nov 10.
Article in English | MEDLINE | ID: mdl-37970541

ABSTRACT

This study assesses the efficacy of ultraviolet light-emitting diodes (UV LEDs) for deactivating Legionella pneumophila (pure culture) and Pseudomonas fluorescens (pure culture and biofilms) on relevant drinking water distribution system surfaces (cast iron and stainless steel). UV LED treatment at 280 nm demonstrated superior performance compared to that at 365 nm, achieving a 4.8 log reduction value (LRV) for P. fluorescens pure cultures and, for biofilms, 4.02 LRV for stainless steel and 2.96 LRV for cast iron at 280 nm. Conversely, the results were less effective at 365 nm, with suspected photolytic reactions on cast iron. Quantification of L. pneumophila yielded varying results: 4 LRV using standard plate counts, 1.8 LRV with Legiolert, and 1 LRV with quantitative polymerase chain reaction at 280 nm, while the results were less than 1.5 LRV at 365 nm. This study provides insights into managing opportunistic pathogens and biofilms, emphasizing the need for improved quantification tools to better assess treatment efficacy.

2.
Sci Rep ; 13(1): 9020, 2023 Jun 03.
Article in English | MEDLINE | ID: mdl-37270662

ABSTRACT

Manganese (Mn) control in surface water systems is a challenge for the drinking water industry, especially through a sustainability framework. Current methods for removing manganese from surface water use strong oxidants that embed carbon and can be expensive and harmful to human health and the environment. In this study, we used a simple biofilter design to remove manganese from lake water, without conventional surface water pre-treatments. Biofilters with aerated influent removed manganese to concentrations below 10 µg/L when receiving influent water containing > 120 µg/L of dissolved manganese. Manganese removal was not inhibited by high iron loadings or poor ammonia removal, suggesting that removal mechanisms may differ from groundwater biofilters. Experimental biofilters also achieved lower effluent manganese concentrations than the full-scale conventional treatment process, while receiving higher manganese concentrations. This biological approach could help achieve sustainable development goals.

3.
Sci Rep ; 13(1): 7576, 2023 May 10.
Article in English | MEDLINE | ID: mdl-37165026

ABSTRACT

Ultraviolet (UV) disinfection has been incorporated into both drinking water and wastewater treatment processes for several decades; however, it comes with negative environmental consequences such as high energy demands and the use of mercury. Understanding how to scale and build climate responsive technologies is key in fulfilling the intersection of UN Sustainable Development Goals 6 and 13. One technology that addresses the drawbacks of conventional wastewater UV disinfection systems, while providing a climate responsive solution, is UV light emitting diodes (LEDs). The objective of this study was to compare performance of bench-scale 280 nm UV LEDs to bench-scale low pressure (LP) lamps and full-scale UV treated wastewater samples. Results from the study demonstrated that the UV LED system provides a robust treatment that outperformed LP systems at the bench-scale. A comparison of relative energy consumptions of the UV LED system at 20 mJ cm-2 and LP system at 30 and 40 mJ cm-2 was completed. Based on current projections for wall plug efficiencies (WPE) of UV LED it is expected that the energy consumption of LED reactors will be on par or lower compared to the LP systems by 2025. This study determined that, at a WPE of 20%, the equivalent UV LED system would lead to a 24.6% and 43.4% reduction in power consumption for the 30 and 40 mJ cm-2 scenarios, respectively.

4.
Sci Total Environ ; 847: 157548, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-35882338

ABSTRACT

Based on recent studies, passive sampling is a promising method for detecting SARS-CoV-2 in wastewater surveillance (WWS) applications. Passive sampling has many advantages over conventional sampling approaches. However, the potential benefits of passive sampling are also coupled with apparent limitations. We established a passive sampling technique for detecting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in wastewater using electronegative filters. Though, it was evident that the adsorption capacity of the filters constrained their use. This work intends to demonstrate an optimized passive sampling technique for SARS-CoV-2 in wastewater using granular activated carbon (GAC). Through bench-scale batch-adsorption studies and sewershed deployments, we established the adsorption characteristics of SARS-CoV-2 and two human feacal viruses (PMMoV and CrAssphage) onto GAC. A pseudo-second-order model best-described adsorption kinetics for SARS-CoV-2 in either deionized (DI) water and SARS-CoV-2, CrAssphage, and PMMoV in wastewater. In both laboratory batch-adsorption experiments and in-situ sewershed deployments, the maximum amount of SARS-CoV-2 adsorbed by GAC occurred at ~60 h in wastewater. In wastewater, the maximum adsorption of PMMoV and CrAssphage by GAC occurred at ~60 h. In contrast, the adsorption capacity was reached in DI water seeded with SARS-CoV-2 after ~35 h. The equilibrium assay modeled the maximum adsorption quantity (qmax) in wastewater with spiked SARS-CoV-2 concentrations using a Hybrid Langmuir-Freundlich equation, a qmax of 2.5 × 109 GU/g was calculated. In paired sewershed deployments, it was found that GAC adsorbs SARS-CoV-2 in wastewater more effectively than electronegative filters. Based on the anticipated viral loading in wastewater, bi-weekly sampling intervals with deployments up to ~96 h are highly feasible without reaching adsorption capacity with GAC. GAC offers improved sensitivity and reproducibility to capture SARS-CoV-2 RNA in wastewater, promoting a scalable and convenient alternative for capturing viral pathogens in wastewater.


Subject(s)
COVID-19 , Wastewater , Adsorption , Charcoal , Humans , RNA, Viral , Reproducibility of Results , SARS-CoV-2 , Wastewater-Based Epidemiological Monitoring , Water
5.
ACS ES T Water ; 2(11): 1910-1920, 2022 Nov 11.
Article in English | MEDLINE | ID: mdl-37566371

ABSTRACT

In developing an effective monitoring program for the wastewater surveillance of SARS-CoV-2 ribonucleic acid (RNA), the importance of sampling methodology is paramount. Passive sampling has been shown to be an effective tool to detect SARS-CoV-2 RNA in wastewater. However, the adsorption characteristics of SARS-CoV-2 RNA on passive sampling material are not well-understood, which further obscures the relationship between wastewater surveillance and community infection. In this work, adsorption kinetics and equilibrium characteristics were evaluated using batch-adsorption experiments for heat-inactivated SARS-CoV-2 (HI-SCV-2) adsorption to electronegative filters. Equilibrium isotherms were assessed or a range of total suspended solids (TSS) concentrations (118, 265, and 497 mg L-1) in wastewater, and a modeled qmax of 7 × 103 GU cm-2 was found. Surrogate adsorption kinetics followed a pseudo-first-order model in wastewater with maximum concentrations achieved within 24 h. In both field and isotherm experiments, equilibrium behavior and viral recovery were found to be associated with wastewater and eluate TSS. On the basis of the results of this study, we recommend a standard deployment duration of 24-48 h and the inclusion of eluate TSS measurement to assess the likelihood of solids inhibition during analysis.

6.
Sci Rep ; 11(1): 15350, 2021 07 28.
Article in English | MEDLINE | ID: mdl-34321542

ABSTRACT

The recent surge in the use of UV technology for personal protective equipment (PPE) has created a unique learning opportunity for the UV industry to deepen surface disinfection knowledge, especially on surfaces with complex geometries, such as the N95 filter facepiece respirators (FFR). The work outlined in this study addresses the interconnectedness of independent variables (e.g., UV Fluence, respirator material) that require consideration when assessing UV light efficacy for disinfecting respirators. Through electron microscopy and Fourier-transform infrared (FTIR) spectroscopy, we characterized respirator filter layers and revealed that polymer type affects disinfection efficacy. Specifically, FFR layers made from polypropylene (PP) (hydrophobic in nature) resulted in higher disinfection efficiency than layers composed of polyethylene terephthalate (PET-P) (hygroscopic in nature). An analysis of elastic band materials on the respirators indicated that silicone rubber-based bands achieved higher disinfection efficiency than PET-P bands and have a woven, fabric-like texture. While there is a strong desire to repurpose respirators, through this work we demonstrated that the design of an appropriate UV system is essential and that only respirators meeting specific design criteria may be reasonable for repurposing via UV disinfection.

7.
Sci Rep ; 11(1): 12279, 2021 06 10.
Article in English | MEDLINE | ID: mdl-34112828

ABSTRACT

During the COVID-19 pandemic, N95 filtering facepiece respirators (FFRs) were recommended to protect healthcare workers when providing care to infected patients. Despite their single-use disposable nature, the need to disinfect and repurpose FFRs is paramount during this global emergency. The objectives of this study were to (1) determine if UV treatment has an observable impact on respirator integrity; (2) test the impact of UV treatment on N95 FFR user fit; and (3) test the impact of UV treatment on FFR integrity. Ultraviolet (UV) disinfection was assessed in maintaining N95 FFR integrity. Two models of FFRs were exposed to UV fluences ranging from 0 to 10,000 mJ cm-2 per side and subsequently tested for fit, respirator integrity, and airflow. Inspection of N95 FFRs before and after UV treatment via microscopy methods showed no observable or tactile abnormalities in the integrity of respirator material or straps. Tensile loading tests on UV-treated and untreated respirator straps also demonstrated no impact on breaking strength. Standardized fit test methods showed no compromise in user fit following UV treatment. Evaluation of particle penetration and airflow through N95 FFRs showed no impact on integrity, and average filtration efficiency did not fall below 95% for any of the respirator types or fluence levels. This work provides evidence that UV disinfection does not compromise N95 FFR integrity at UV fluences up to 10,000 mJ cm-2. UV disinfection is a viable treatment option to support healthcare professionals in their strategy against the spread of COVID-19.


Subject(s)
Disinfection/methods , N95 Respirators , COVID-19/prevention & control , Health Personnel , Humans , Materials Testing , Ultraviolet Rays
8.
Sci Total Environ ; 760: 143346, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33160659

ABSTRACT

We are in unprecedented times with the ongoing COVID-19 pandemic. The pandemic has impacted public health, the economy and our society on a global scale. In addition, the impacts of COVID-19 permeate into our environment and wildlife as well. Here, we discuss the essential role of wastewater treatment and management during these times. A consequence of poor wastewater management is the discharge of untreated wastewater carrying infectious SARS-CoV-2 into natural water systems that are home to marine mammals. Here, we predict the susceptibility of marine mammal species using a modelling approach. We identified that many species of whale, dolphin and seal, as well as otters, are predicted to be highly susceptible to infection by the SARS-CoV-2 virus. In addition, geo-mapping highlights how current wastewater management in Alaska may lead to susceptible marine mammal populations being exposed to the virus. Localities such as Cold Bay, Naknek, Dillingham and Palmer may require additional treatment of their wastewater to prevent virus spillover through sewage. Since over half of these susceptibility species are already at risk worldwide, the release of the virus via untreated wastewater could have devastating consequences for their already declining populations. For these reasons, we discuss approaches that can be taken by the public, policymakers and wastewater treatment facilities to reduce the risk of virus spillover in our natural water systems. Thus, we indicate the potential for reverse zoonotic transmission of COVID-19 and its impact on marine wildlife; impacts that can be mitigated with appropriate action to prevent further damage to these vulnerable populations.


Subject(s)
COVID-19 , Pandemics , Alaska , Animals , Humans , SARS-CoV-2 , Wastewater
9.
Environ Sci Technol ; 54(4): 2192-2201, 2020 02 18.
Article in English | MEDLINE | ID: mdl-31961665

ABSTRACT

Access to clean and safe drinking water is a perpetual concern in Arctic communities because of challenging climatic conditions, limited options for the transportation of equipment and process chemicals, and the ongoing effects of colonialism. Water samples were gathered from multiple locations in a decentralized trucked drinking water system in Nunavut, Canada, over the course of one year. The results indicate that point of use drinking water quality was impacted by conditions in the source water and in individual buildings and strongly suggest that lead and copper measured at the tap were related to corrosion of onsite premise plumbing components. Humic-like substances were the dominant organic fraction in all samples, as determined by regional integration of fluorescence data. Iron and manganese levels in the source water and throughout the water system were higher in the winter and lower in the summer months. Elevated concentrations of copper (>2000 µg L-1) and lead (>5 µg L-1) were detected in tap water from some buildings. Field flow fractionation coupled with inductively coupled plasma mass spectrometry and ultraviolet-visible spectrometry was used to demonstrate the link between source water characteristics (high organics, iron and manganese) and lead and copper in point of use drinking water.


Subject(s)
Drinking Water , Water Pollutants, Chemical , Canada , Corrosion , Nunavut , Water Quality , Water Supply
10.
Water Res ; 151: 193-202, 2019 03 15.
Article in English | MEDLINE | ID: mdl-30594087

ABSTRACT

Ultraviolet light emitting diodes (UV LEDs) are a promising technology for the disinfection of water and wetted surfaces, but research into these applications remains limited. In the drinking water field, UV LEDs emitting at wavelengths ranging from 254 nm to 285 nm (UVC LEDs) have been shown to be effective for the inactivation of numerous pathogens and pathogen surrogate organisms at UV doses comparable to conventional germicidal UV lamps. Surface disinfection with UV light, from UVC LEDs or from conventional UV lamps, is not as well understood. As the technology underlying the design and construction of UV LEDs matures and their energy efficiency improves, it is likely that they will become ubiquitous in small scale water treatment applications and surface disinfection in various industries, including the medical and dental fields. A simple, easily replicated methodology was developed and optimized to grow, irradiate, and recover biofilms from coupons. It was hypothesized that higher UV doses would be required to inactivate biofilm-bound bacteria than planktonic (free-floating) bacteria because the biofilm would provide some degree of protection from the effects of UVC irradiation. Indeed, UV LED irradiation at 265 nm achieved 1.3 ±â€¯0.2 log inactivation of biofilm-bound Pseudomonas aeruginosa at a UV dose of 8 mJ/cm2. This inactivation level is lower than those that have been reported by researchers using UVC LEDs to inactivate planktonic P. aeruginosa, a finding that can be explained by the higher resistance of biofilm-bound bacteria to UV inactivation. A dose-response curve was developed and fitted to three disinfection models: the Chick-Watson model, the multi-target model, and the Geeraerd model. This last, which posits a subpopulation of organisms that are resistant to treatment, was a good fit to the dose-response data. ATP results obtained using the biomass recovery ATP method (ATPBR), a method that includes a 4 h incubation period after treatment, was well correlated to the results of conventional plate counts.


Subject(s)
Disinfection , Pseudomonas aeruginosa , Bacteria , Biofilms , Ultraviolet Rays
11.
ACS Omega ; 3(11): 14824-14832, 2018 Nov 30.
Article in English | MEDLINE | ID: mdl-30555991

ABSTRACT

Lead release in a lead (Pb, anode)-iron oxide (α-Fe2O3, cathode) galvanic system was studied under the influence of synthetic extracellular polymeric substances (sEPS). Sodium alginate, bovine serum albumin (BSA), and cytochrome c represented extracellular polysaccharides, proteins, and electrochemically active components, respectively. Microbiologically influenced corrosion was investigated using sEPS and pelleted and resuspended Pseudomonas aeruginosa cells. Relative to the anaerobic inorganic control, Pb release increased by 156, 202, and 198 µg/L when sEPS was present on the cathode side at 200 mg/L (100 mg/L alginate + 100 mg/L BSA), 400 mg/L (200 mg/L alginate + 200 mg/L BSA), and 200 mg/L with 123.84 mg/L cytochrome c, respectively, under anaerobic conditions. When the cathode was aerated, Pb release increased by 75, 260, and -71 µg/L under the aforementioned conditions, all relative to the aerated inorganic control. When sEPS was instead present on the anode side, sEPS caused localized corrosion on Pb and resulted in higher Pb release than predicted by electric current. P. aeruginosa generally enhanced corrosion; when cells were dosed in the anode side, part of the oxidized Pb was immobilized by cells or organic compounds adhered to the electrodes.

12.
Environ Sci Pollut Res Int ; 25(33): 32988-33000, 2018 Nov.
Article in English | MEDLINE | ID: mdl-28710728

ABSTRACT

Arctic communities often face drinking water supply challenges that are unique to their location. Consequently, conventional drinking water regulatory strategies often do not meet the needs of these communities. A literature review of Arctic jurisdictions was conducted to evaluate the current water management approaches and how these techniques could be applied to the territory of Nunavut in Canada. The countries included are all members of the Arctic Council and other Canadian jurisdictions considered important to the understanding of water management for Northern Canadian communities. The communities in Nunavut face many challenges in delivering safe water to customers due to remoteness, small community size and therefore staffing constraints, lack of guidelines and monitoring procedures specific to Nunavut, and water treatment and distribution systems that are vastly different than those used in southern communities. Water safety plans were explored as an alternative to water quality regulations as recent case studies have demonstrated the utility of this risk management tool, especially in the context of small communities. Iceland and Alberta both currently have regulated water safety plans (WSPs) and were examined to understand shortcomings and benefits if WSPs were to be applied as a possible strategy in Nunavut. Finally, this study discusses specific considerations that are necessary should a WSP approach be applied in Nunavut.


Subject(s)
Drinking Water/standards , Water Supply/legislation & jurisprudence , Alberta , Arctic Regions , Canada , Humans , Iceland , Motor Vehicles , Nunavut , Risk Management , Water Purification , Water Quality , Water Supply/standards
13.
Environ Sci Technol ; 51(3): 1414-1422, 2017 02 07.
Article in English | MEDLINE | ID: mdl-28030768

ABSTRACT

This study examined sulfate deposition in Nova Scotia from 1999 to 2015, and its association with increased pH and organic matter in two protected surface water supplies (Pockwock Lake and Lake Major) located in Halifax, Nova Scotia. The study also examined the effect of lake water chemistry on drinking water treatment processes. Sulfate deposition in the region decreased by 68%, whereas pH increased by 0.1-0.4 units over the 16-year period. Average monthly color concentrations in Pockwock Lake and Lake Major increased by 1.7 and 3.8×, respectively. Accordingly, the coagulant demand increased by 1.5 and 3.8× for the water treatment plants supplied by Pockwock Lake and Lake Major. Not only was this coagulant increase costly for the utility, it also resulted in compromised filter performance, particularly for the direct-biofiltration plant supplied by Pockwock Lake that was found to already be operating at the upper limit of the recommended direct filtration thresholds for color, total organic carbon and coagulant dose. Additionally, in 2012-2013 geosmin occurred in Pockwock Lake, which could have been attributed to reduced sulfate deposition as increases in pH favor more diverse cyanobacteria populations. Overall, this study demonstrated the impact that ambient air quality can have on drinking water supplies.


Subject(s)
Lakes , Water Purification , Carbon , Drinking Water , Sulfates , Water Supply
14.
Article in English | MEDLINE | ID: mdl-25320848

ABSTRACT

The number and complexity of natural organic matter (NOM) species limits identification of individual NOM compounds. The objective of this study was to employ several characterization techniques (resin fractionation, high performance size exclusion chromatography (HPSEC), and strategic UV254 absorbance) to samples from seven surface water sites in North America, and overcome the shortfalls of each tool. Resin fractionation indicated the samples were all high in hydrophobic acids (HOA), hydrophilic neutrals (HIN) and hydrophilic acids (HIA). Site B was the only site where HIAs were the highest NOM contributors. In the HPSEC analysis, each fraction exhibited a particular molecular weight (MW) range: 100-300 Da (HIN), 1-2 kDa (HOA), and the HIA fractions exhibited MWs between these two ranges. Strategic UV254 measurements were taken at two sites to supplement the HPSEC results, and determine the difference in UV absorbance per unit dissolved organic carbon (SUVA value). Most fractions showed SUVA values of approximately 5 L/mg-m; however, the hydrophilic bases and hydrophobic neutral fractions could not be accurately evaluated due to the very low DOC concentrations for these two fractions (< 0.2 mg/L). These methods are complimentary NOM characterization techniques, and the combined methodology addresses the analytical limits of each tool.


Subject(s)
Chromatography, Gel , Chromatography, High Pressure Liquid , Environmental Monitoring/methods , Organic Chemicals/analysis , Water Pollutants, Chemical/analysis , Chemical Fractionation , Hydrophobic and Hydrophilic Interactions , New York , Newfoundland and Labrador , Nova Scotia
SELECTION OF CITATIONS
SEARCH DETAIL
...