Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Monogr ; 93(1): e1559, 2023 Feb.
Article in English | MEDLINE | ID: mdl-37035418

ABSTRACT

Understanding the demographic drivers of range contractions is important for predicting species' responses to climate change; however, few studies have examined the effects of climate change on survival and recruitment across species' ranges. We show that climate change can drive trailing edge range contractions through the effects on apparent survival, and potentially recruitment, in a migratory songbird. We assessed the demographic drivers of trailing edge range contractions using a long-term demography dataset for the black-throated blue warbler (Setophaga caerulescens) collected across elevational climate gradients at the trailing edge and core of the breeding range. We used a Bayesian hierarchical model to estimate the effect of climate change on apparent survival and recruitment and to forecast population viability at study plots through 2040. The trailing edge population at the low-elevation plot became locally extinct by 2017. The local population at the mid-elevation plot at the trailing edge gradually declined and is predicted to become extirpated by 2040. Population declines were associated with warming temperatures at the mid-elevation plot, although results were more equivocal at the low-elevation plot where we had fewer years of data. Population density was stable or increasing at the range core, although warming temperatures are predicted to cause population declines by 2040 at the low-elevation plot. This result suggests that even populations within the geographic core of the range are vulnerable to climate change. The demographic drivers of local population declines varied between study plots, but warming temperatures were frequently associated with declining rates of population growth and apparent survival. Declining apparent survival in our study system is likely to be associated with increased adult emigration away from poor-quality habitats. Our results suggest that demographic responses to warming temperatures are complex and dependent on local conditions and geographic range position, but spatial variation in population declines is consistent with the climate-mediated range shift hypothesis. Local populations of black-throated blue warblers near the warm-edge range boundary at low latitudes and low elevations are likely to be the most vulnerable to climate change, potentially leading to local extirpation and range contractions.

2.
Am Nat ; 189(6): 726-733, 2017 06.
Article in English | MEDLINE | ID: mdl-28514629

ABSTRACT

Multiple biotic, abiotic, and evolutionary constraints interact to determine a species' range. However, most species are not present in all suitable and accessible locations. Dispersal ability may explain why many species do not occupy all suitable habitat, but highly mobile species also exhibit a mismatch. Habitat selection behavior where individuals are site faithful and settle near conspecifics could create a social pressure that make a species' geographic range resistant to change. We investigated this possibility by using an individual-based model of habitat selection where habitat quality moved each year. Our model demonstrated the benefits of conspecific attraction in relatively stable environments and its detrimental influence when habitat quality shifted rapidly. These results were most apparent when adult survival was high, because site fidelity led to more individuals occupying poor-quality habitat areas as habitat quality changed. These individuals attracted other dispersing individuals, thereby decreasing the ability to track shifts in habitat quality, which we refer to as "social inertia." Consequently, social inertia may arise for species that exhibit site fidelity and conspecific attraction, which may have conservation implications in light of climate change and widespread alteration of natural habitats.


Subject(s)
Climate Change , Environment , Animals , Ecosystem , Models, Theoretical
3.
Oecologia ; 164(4): 1017-27, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20711610

ABSTRACT

Predation pressure and resource availability often interact in structuring herbivore communities, with their relative influence varying in space and time. The operation of multiple ecological pressures and guild-specific herbivore responses may combine to override simple predictions of how the roles of plant quality and predation pressure vary in space. For 2 years at the Coweeta LTER in the Southern Appalachian Mountains, we conducted a bird exclosure experiment on red oak (Quercus rubra) saplings to investigate the effects of bird predation on red oak arthropod communities. We established bird exclosures at six sites along an elevational gradient and estimated variation in foliar nitrogen and bird predation pressure along this gradient. Foliar nitrogen concentrations increased with elevation while our index of bird predation pressure was variable across sites. Greater arthropod densities were detected inside exclosures; however, this result was mainly driven by the response of phloem feeders which were much more prevalent inside exclosures than on control trees. There was little evidence for an effect of bird predation on the other arthropod guilds. Consequently, there was no evidence of a trophic cascade either in terms of leaf damage or tree growth. Finally, we found more variation in arthropod density among trees within sites than variation in arthropod density among sites, indicating the importance of micro-site variation in structuring arthropod communities.


Subject(s)
Arthropods/physiology , Food Chain , Quercus/metabolism , Animals , Nitrogen/metabolism , Plant Leaves/growth & development , Plant Leaves/metabolism , Population Density , Quercus/growth & development
4.
Environ Entomol ; 38(4): 1161-7, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19689895

ABSTRACT

Elevational gradients provide natural experiments for examining how variation in abiotic forces such as nutrient mineralization rates, risk of photodamge, temperature, and precipitation influence plant-insect interactions. At the Coweeta LTER site in the Southern Appalachian Mountains, we examined spatial and temporal variation in striped maple, Acer pensylvanicum, foliar quality and associated patterns in the arthropod community. Variation in herbivore densities was associated more strongly with seasonal variation in plant quality than with spatial variation in quality among three sampling sites. Leaf chewer, but not phloem feeder or arthropod predator, densities increased with elevation. Foliar quality, by our measures, decreased throughout the growing season, with decreases in nitrogen concentrations and increases in lignin concentrations. Foliar quality varied among the three sites but not systematically along the elevational gradient. We conclude that, in this system, temporal heterogeneity in plant quality is likely to be more important to insect herbivores than is spatial heterogeneity and that other factors, such as the abiotic environment and natural enemies, likely have substantial effects on herbivore density.


Subject(s)
Acer/metabolism , Altitude , Arthropods , Ecosystem , Plant Leaves/metabolism , Animals , Cellulose/metabolism , Lignin/metabolism , Nitrogen/metabolism , North Carolina , Phenols/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...