Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Cent Sci ; 8(8): 1091-1101, 2022 Aug 24.
Article in English | MEDLINE | ID: mdl-36032767

ABSTRACT

Enoyl-CoA carboxylases/reductases (ECRs) are some of the most efficient CO2-fixing enzymes described to date. However, the molecular mechanisms underlying the extraordinary catalytic activity of ECRs on the level of the protein assembly remain elusive. Here we used a combination of ambient-temperature X-ray free electron laser (XFEL) and cryogenic synchrotron experiments to study the structural organization of the ECR from Kitasatospora setae. The K. setae ECR is a homotetramer that differentiates into a pair of dimers of open- and closed-form subunits in the catalytically active state. Using molecular dynamics simulations and structure-based mutagenesis, we show that catalysis is synchronized in the K. setae ECR across the pair of dimers. This conformational coupling of catalytic domains is conferred by individual amino acids to achieve high CO2-fixation rates. Our results provide unprecedented insights into the dynamic organization and synchronized inter- and intrasubunit communications of this remarkably efficient CO2-fixing enzyme during catalysis.

2.
mBio ; 12(4): e0032921, 2021 08 31.
Article in English | MEDLINE | ID: mdl-34399608

ABSTRACT

The nicotinamide cofactor specificity of enzymes plays a key role in regulating metabolic processes and attaining cellular homeostasis. Multiple studies have used enzyme engineering tools or a directed evolution approach to switch the cofactor preference of specific oxidoreductases. However, whole-cell adaptation toward the emergence of novel cofactor regeneration routes has not been previously explored. To address this challenge, we used an Escherichia coli NADPH-auxotrophic strain. We continuously cultivated this strain under selective conditions. After 500 to 1,100 generations of adaptive evolution using different carbon sources, we isolated several strains capable of growing without an external NADPH source. Most isolated strains were found to harbor a mutated NAD+-dependent malic enzyme (MaeA). A single mutation in MaeA was found to switch cofactor specificity while lowering enzyme activity. Most mutated MaeA variants also harbored a second mutation that restored the catalytic efficiency of the enzyme. Remarkably, the best MaeA variants identified this way displayed overall superior kinetics relative to the wild-type variant with NAD+. In other evolved strains, the dihydrolipoamide dehydrogenase (Lpd) was mutated to accept NADP+, thus enabling the pyruvate dehydrogenase and 2-ketoglutarate dehydrogenase complexes to regenerate NADPH. Interestingly, no other central metabolism oxidoreductase seems to evolve toward reducing NADP+, which we attribute to several biochemical constraints, including unfavorable thermodynamics. This study demonstrates the potential and biochemical limits of evolving oxidoreductases within the cellular context toward changing cofactor specificity, further showing that long-term adaptive evolution can optimize enzyme activity beyond what is achievable via rational design or directed evolution using small libraries. IMPORTANCE In the cell, NAD(H) and NADP(H) cofactors have different functions. The former mainly accepts electrons from catabolic reactions and carries them to respiration, while the latter provides reducing power for anabolism. Correspondingly, the ratio of the reduced to the oxidized form differs for NAD+ (low) and NADP+ (high), reflecting their distinct roles. We challenged the flexibility of E. coli's central metabolism in multiple adaptive evolution experiments using an NADPH-auxotrophic strain. We found several mutations in two enzymes, changing the cofactor preference of malic enzyme and dihydrolipoamide dehydrogenase. Upon deletion of their corresponding genes we performed additional evolution experiments which did not lead to the emergence of any additional mutants. We attribute this restricted number of mutational targets to intrinsic thermodynamic barriers; the high ratio of NADPH to NADP+ limits metabolic redox reactions that can regenerate NADPH, mainly by mass action constraints.


Subject(s)
Coenzymes/metabolism , Escherichia coli/enzymology , Escherichia coli/metabolism , Evolution, Molecular , NADP/metabolism , Oxidoreductases/metabolism , Carbon/metabolism , Coenzymes/genetics , Escherichia coli/genetics , Escherichia coli Proteins , Kinetics , Malate Dehydrogenase/metabolism , NAD/metabolism , Oxidoreductases/genetics
3.
ACS Catal ; 10(14): 7512-7525, 2020 Jul 17.
Article in English | MEDLINE | ID: mdl-32733773

ABSTRACT

The efficient regeneration of cofactors is vital for the establishment of biocatalytic processes. Formate is an ideal electron donor for cofactor regeneration due to its general availability, low reduction potential, and benign byproduct (CO2). However, formate dehydrogenases (FDHs) are usually specific to NAD+, such that NADPH regeneration with formate is challenging. Previous studies reported naturally occurring FDHs or engineered FDHs that accept NADP+, but these enzymes show low kinetic efficiencies and specificities. Here, we harness the power of natural selection to engineer FDH variants to simultaneously optimize three properties: kinetic efficiency with NADP+, specificity toward NADP+, and affinity toward formate. By simultaneously mutating multiple residues of FDH from Pseudomonas sp. 101, which exhibits practically no activity toward NADP+, we generate a library of >106 variants. We introduce this library into an E. coli strain that cannot produce NADPH. By selecting for growth with formate as the sole NADPH source, we isolate several enzyme variants that support efficient NADPH regeneration. We find that the kinetically superior enzyme variant, harboring five mutations, has 5-fold higher efficiency and 14-fold higher specificity in comparison to the best enzyme previously engineered, while retaining high affinity toward formate. By using molecular dynamics simulations, we reveal the contribution of each mutation to the superior kinetics of this variant. We further determine how nonadditive epistatic effects improve multiple parameters simultaneously. Our work demonstrates the capacity of in vivo selection to identify highly proficient enzyme variants carrying multiple mutations which would be almost impossible to find using conventional screening methods.

4.
Proc Natl Acad Sci U S A ; 116(28): 13964-13969, 2019 07 09.
Article in English | MEDLINE | ID: mdl-31243147

ABSTRACT

Carboxylases are biocatalysts that capture and convert carbon dioxide (CO2) under mild conditions and atmospheric concentrations at a scale of more than 400 Gt annually. However, how these enzymes bind and control the gaseous CO2 molecule during catalysis is only poorly understood. One of the most efficient classes of carboxylating enzymes are enoyl-CoA carboxylases/reductases (Ecrs), which outcompete the plant enzyme RuBisCO in catalytic efficiency and fidelity by more than an order of magnitude. Here we investigated the interactions of CO2 within the active site of Ecr from Kitasatospora setae Combining experimental biochemistry, protein crystallography, and advanced computer simulations we show that 4 amino acids, N81, F170, E171, and H365, are required to create a highly efficient CO2-fixing enzyme. Together, these 4 residues anchor and position the CO2 molecule for the attack by a reactive enolate created during the catalytic cycle. Notably, a highly ordered water molecule plays an important role in an active site that is otherwise carefully shielded from water, which is detrimental to CO2 fixation. Altogether, our study reveals unprecedented molecular details of selective CO2 binding and C-C-bond formation during the catalytic cycle of nature's most efficient CO2-fixing enzyme. This knowledge provides the basis for the future development of catalytic frameworks for the capture and conversion of CO2 in biology and chemistry.


Subject(s)
Amino Acids/chemistry , Carbon Dioxide/chemistry , Fatty Acid Desaturases/chemistry , Models, Molecular , Amino Acids/genetics , Amino Acids/metabolism , Carbon Dioxide/metabolism , Carrier Proteins/chemistry , Catalysis , Catalytic Domain/genetics , Enzymes/chemistry , Fatty Acid Desaturases/metabolism , Streptomycetaceae/chemistry , Streptomycetaceae/enzymology
5.
J Biol Chem ; 293(44): 17200-17207, 2018 11 02.
Article in English | MEDLINE | ID: mdl-30217823

ABSTRACT

The enoyl-thioester reductase InhA catalyzes an essential step in fatty acid biosynthesis of Mycobacterium tuberculosis and is a key target of antituberculosis drugs to combat multidrug-resistant M. tuberculosis strains. This has prompted intense interest in the mechanism and intermediates of the InhA reaction. Here, using enzyme mutagenesis, NMR, stopped-flow spectroscopy, and LC-MS, we found that the NADH cofactor and the CoA thioester substrate form a covalent adduct during the InhA catalytic cycle. We used the isolated adduct as a molecular probe to directly access the second half-reaction of the catalytic cycle of InhA (i.e. the proton transfer), independently of the first half-reaction (i.e. the initial hydride transfer) and to assign functions to two conserved active-site residues, Tyr-158 and Thr-196. We found that Tyr-158 is required for the stereospecificity of protonation and that Thr-196 is partially involved in hydride transfer and protonation. The natural tendency of InhA to form a covalent C2-ene adduct calls for a careful reconsideration of the enzyme's reaction mechanism. It also provides the basis for the development of effective tools to study, manipulate, and inhibit the catalytic cycle of InhA and related enzymes of the short-chain dehydrogenase/reductase (SDR) superfamily. In summary, our work has uncovered the formation of a covalent adduct during the InhA catalytic cycle and identified critical residues required for catalysis, providing further insights into the InhA reaction mechanism important for the development of antituberculosis drugs.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Mycobacterium tuberculosis/enzymology , Oxidoreductases/chemistry , Oxidoreductases/metabolism , Amino Acid Motifs , Bacterial Proteins/genetics , Biocatalysis , Catalytic Domain , Models, Molecular , Mycobacterium tuberculosis/chemistry , Mycobacterium tuberculosis/genetics , Oxidoreductases/genetics , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...