Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Carbohydr Polym ; 305: 120554, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36737219

ABSTRACT

Pickering emulsions are increasingly preferred over typical surfactant-based emulsions due to several advantages, such as lower emulsifier usage, simplicity, biocompatibility, and safety. These types of emulsions are stabilized using solid particles, which produce a thick layer at the oil-water interface preventing droplets from aggregating. Starch nano-particles (SNPs) have received considerable attention as natural alternatives to synthetic stabilizers due to their unique properties. Physical formulation processes are currently preferred for SNP production since they are environmentally friendly procedures that do not require the use of chemical reagents. This review provides a thorough overview in a critical perspective of the physical processes to produce starch nano-particles used as Pickering emulsion stabilizers, fabricated by a 2-step process. Specifically, the reviewed physical approaches for nano-starch preparation include high hydrostatic pressure, high pressure homogenization, ultrasonication, milling and antisolvent precipitation. All the essential parameters used to evaluate the effectiveness of particles in stabilizing these systems are also presented in detail, including the hydrophobicity, size, and content of starch particles. Finally, this review provides the basis for future research focusing on physical nano-starch production, to ensure the widespread use of these natural stabilizers in the ever-evolving field of food technology.

2.
J Food Sci ; 87(4): 1475-1488, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35292980

ABSTRACT

Refrigerated pickles are characterized by crisp, crunchy texture, opaque flesh, and fresh flavor. Typically produced without a thermal process, microbial safety relies on preventive controls, brine composition, and sufficient hold time prior to consumption. We hypothesized that brief blanching of whole cucumbers prior to pickling could provide an additional hurdle for pathogenic microbes without negatively impacting finished product quality. Blanch treatments (15, 90, or 180 s) in 80°C water were conducted in duplicate on two lots of cucumbers prior to cutting into spears, acidifying, and storing at 4°C. Enumeration of total aerobes, lactic acid bacteria, and glucose-fermenting coliforms was conducted for fresh and blanched cucumber. Texture, color, cured appearance development, and volatile compound profiles were analyzed for fresh and blanched cucumber and corresponding pickle products during refrigerated storage. The 90 s blanch consistently achieved a minimum 2-log reduction in cucumber microbiota and a predicted 5-log reduction of Escherichia coli O157:H7 up to 1.1 mm into the cucumber fruit. Blanching had no impact on tissue firmness during refrigerated storage for 1 year (p > 0.098). There were no differences in flavor-active lipid oxidation products (E,Z)-2,6-nonadienal and (E)-2-nonenal, and consumers (n = 110) were unable to differentiate between control and 90 s blanched cucumber pickles stored for 62 days. Exocarp color and mesocarp opacity were preserved by the blanching treatment, potentially extending product shelf life. This method offers processors an option for reducing the risk of microbial contamination while maintaining the quality attributes associated with refrigerated cucumber pickles. PRACTICAL APPLICATION: Refrigerated pickles do not undergo thermal processing, which can leave them vulnerable to microbial contamination. This study illustrates that adding a brief blanching step in refrigerated pickle processing can reduce indigenous microbiota without negatively impacting quality attributes. This blanching process could assist pickled vegetable manufacturers in providing additional safeguards for consumers while maintaining a high-quality product.


Subject(s)
Cucumis sativus , Escherichia coli O157 , Fermented Foods , Colony Count, Microbial , Cucumis sativus/microbiology , Fruit
SELECTION OF CITATIONS
SEARCH DETAIL
...