Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Virol ; 141: 104909, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34271540

ABSTRACT

BACKGROUND: The current reference standard to diagnose a SARS-CoV-2 infection is real-time reverse transcriptase polymerase chain reaction (RT-PCR). This test poses substantial challenges for large-scale community testing, especially with respect to the long turnaround times. SARS-CoV-2 antigen tests are an alternative, but typically use a lateral flow assay format rendering them less suitable for analysis of large numbers of samples. METHODS: We conducted an evaluation of the Diasorin SARS-CoV-2 antigen detection assay (DAA) compared to real-time RT-PCR (Abbott). The study was performed on 248 (74 qRT-PCR positive, 174 qRT-PCR negative) clinical combined oro-nasopharyngeal samples of individuals with COVID-19-like symptoms obtained at a Municipal Health Service test centre. In addition, we evaluated the analytical performance of DAA with a 10-fold dilution series of SARS-CoV-2 containing culture supernatant and compared it with the lateral flow assay SARS-CoV-2 Roche/SD Biosensor Rapid Antigen test (RRA). RESULTS: The DAA had an overall specificity of 100% (95%CI 97.9%-100%) and sensitivity of 73% (95%CI 61.3%-82.7%) for the clinical samples. Sensitivity was 86% (CI95% 74.6%-93.3%) for samples with Ct-value below 30. Both the DAA and RRA detected SARS-CoV-2 up to a dilution containing 5.2 × 102 fifty-percent-tissue-culture-infective-dose (TCID50)/ml. DISCUSSION: The DAA performed adequately for clinical samples with a Ct-value below 30. Test performance may be further optimised by lowering the relative light unit (RLU) threshold for positivity assuming the in this study used pre-analytical protocol . The test has potential for use as a diagnostic assay for symptomatic community-dwelling individuals early after disease onset in the context of disease control.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Nasopharynx , Sensitivity and Specificity
2.
J Hosp Infect ; 111: 132-139, 2021 May.
Article in English | MEDLINE | ID: mdl-33582200

ABSTRACT

BACKGROUND: Vancomycin-resistant enterococci (VRE) may cause nosocomial outbreaks. This article describes all VRE carriers that were identified in 2018 at Elisabeth-Tweesteden Hospital, Tilburg, The Netherlands. AIM: To investigate the genetic relatedness of VRE isolates and the possibility of a common environmental reservoir using environmental sampling and whole-genome sequencing (WGS). METHODS: Infection control measures consisted of contact isolation, contact surveys, point prevalence screening, environmental sampling, cleaning and disinfection. VRE isolates were sequenced using a MiSeq sequencer (Illumina, San Diego, CA, USA), and assembled using SPAdes v.3.10.1. A minimal spanning tree and a neighbour joining tree based on allelic diversity of core-genome multi-locus sequence typing and accessory genes were created using Ridom SeqSphere+ software (Ridom GmbH, Münster, Germany). FINDINGS: Over a 1-year period, 19 VRE carriers were identified; of these, 17 were part of two outbreaks. Before environmental cleaning and disinfection, 55 (14%) environmental samples were VRE-positive. Fifty-one isolates (23 patient samples and 28 environmental samples) were available for WGS analysis. Forty-four isolates were assigned to ST117-vanB, five were assigned to ST17-vanB, and two were assigned to ST80-vanB. Isolates from Outbreak 1 (N=22) and Outbreak 2 (N=22) belonged to ST117-vanB; however, WGS showed a different cluster type with 257 allelic differences. CONCLUSION: WGS of two outbreak strains provided discriminatory information regarding genetic relatedness, and rejected the hypothesis of a common environmental reservoir. A high degree of environmental contamination was associated with higher VRE transmission. Quantification of environmental contamination may reflect the potential for VRE transmission and could therefore support the infection control measures.


Subject(s)
Cross Infection , Enterococcus faecium , Gram-Positive Bacterial Infections , Vancomycin-Resistant Enterococci , Cross Infection/epidemiology , Disease Outbreaks , Enterococcus faecium/genetics , Gram-Positive Bacterial Infections/epidemiology , Hospitals, Teaching , Humans , Multilocus Sequence Typing , Netherlands , Vancomycin , Vancomycin-Resistant Enterococci/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...