Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
mBio ; 14(1): e0152622, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36515529

ABSTRACT

Poxviruses are often thought to evolve relatively slowly because they are double-stranded DNA pathogens with proofreading polymerases. However, poxviruses have highly adaptable genomes and can undergo relatively rapid genotypic and phenotypic change, as illustrated by the recent increase in human-to-human transmission of monkeypox virus. Advances in deep sequencing technologies have demonstrated standing nucleotide variation in poxvirus populations, which has been underappreciated. There is also an emerging understanding of the role genomic architectural changes play in shaping poxvirus evolution. These mechanisms include homologous and nonhomologous recombination, gene duplications, gene loss, and the acquisition of new genes through horizontal gene transfer. In this review, we discuss these evolutionary mechanisms and their potential roles for adaption to novel host species and modulating virulence.


Subject(s)
Evolution, Molecular , Poxviridae , Humans , Poxviridae/genetics , Host Specificity , Gene Duplication
2.
Viruses ; 14(10)2022 09 29.
Article in English | MEDLINE | ID: mdl-36298710

ABSTRACT

The 2022 multi-country monkeypox outbreak in humans has brought new public health adversity on top of the ongoing coronavirus disease 2019 (COVID-19) pandemic. The disease has spread to 104 countries throughout six continents of the world, with the highest burden in North America and Europe. The etiologic agent, monkeypox virus (MPXV), has been known since 1959 after isolation from infected monkeys, and virulence among humans has been reported since the 1970s, mainly in endemic countries in West and Central Africa. However, the disease has re-emerged in 2022 at an unprecedented pace, with particular concern on its human-to-human transmissibility and community spread in non-endemic regions. As a mitigation effort, healthcare workers, public health policymakers, and the general public worldwide need to be well-informed on this relatively neglected viral disease. Here, we provide a comprehensive and up-to-date overview of monkeypox, including the following aspects: epidemiology, etiology, pathogenesis, clinical features, diagnosis, and management. In addition, the current review discusses the preventive and control measures, the latest vaccine developments, and the future research areas in this re-emerging viral disease that was declared as a public health emergency of international concern.


Subject(s)
COVID-19 , Mpox (monkeypox) , Vaccines , Humans , Mpox (monkeypox)/epidemiology , COVID-19/epidemiology , Monkeypox virus , Disease Outbreaks
3.
Elife ; 112022 09 07.
Article in English | MEDLINE | ID: mdl-36069678

ABSTRACT

There is ample phylogenetic evidence that many critical virus functions, like immune evasion, evolved by the acquisition of genes from their hosts through horizontal gene transfer (HGT). However, the lack of an experimental system has prevented a mechanistic understanding of this process. We developed a model to elucidate the mechanisms of HGT into vaccinia virus, the prototypic poxvirus. All identified gene capture events showed signatures of long interspersed nuclear element-1 (LINE-1)-mediated retrotransposition, including spliced-out introns, polyadenylated tails, and target site duplications. In one case, the acquired gene integrated together with a polyadenylated host U2 small nuclear RNA. Integrations occurred across the genome, in some cases knocking out essential viral genes. These essential gene knockouts were rescued through a process of complementation by the parent virus followed by nonhomologous recombination during serial passaging to generate a single, replication-competent virus. This work links multiple evolutionary mechanisms into one adaptive cascade and identifies host retrotransposons as major drivers for virus evolution.


Subject(s)
Poxviridae , Gene Transfer, Horizontal , Phylogeny , Poxviridae/genetics , Retroelements/genetics , Vaccinia virus/genetics
4.
Virology ; 574: 71-83, 2022 09.
Article in English | MEDLINE | ID: mdl-35933832

ABSTRACT

CD163, a receptor for porcine reproductive and respiratory syndrome virus (PRRSV), possesses nine scavenger receptor cysteine-rich (SRCR) and two proline-serine-threonine (PST) domains. To identify CD163 regions involved in PRRSV infection, CD163 mutants were generated. Infection experiments showed resistance to infection following deletion of the SRCR4/5 interdomain or the Exon 13 that encodes a portion of PSTII. The mutation of a pentapeptide domain in SRCR5 and SRCR7 also conferred resistance. Mutant CD163 proteins that resisted infection retained the ability to interact with GP2, GP3, GP4 and GP5 viral glycoproteins. The contribution of multiple domains to infection but not to the binding of viral glycoproteins suggests that the envelope proteins may form multiple interactions with CD163, or that receptor regions important for infection have other cellular binding partners required for PRRSV infection. Finally, we mapped the localization the anti-CD163 2A10 antibody epitope.


Subject(s)
Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Animals , Antigens, Differentiation, Myelomonocytic/genetics , Antigens, Differentiation, Myelomonocytic/metabolism , Mutant Proteins , Porcine respiratory and reproductive syndrome virus/genetics , Porcine respiratory and reproductive syndrome virus/metabolism , Receptors, Scavenger , Swine , Viral Envelope Proteins/genetics
5.
Transbound Emerg Dis ; 69(6): 3216-3224, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35881701

ABSTRACT

African swine fever virus (ASFV) causes high case fatality in pigs and a trade-limiting disease resulting in significant economic losses to pork production. ASFV is resistant to environmental degradation and maintains infectivity in feed ingredients exposed to transoceanic shipment conditions. As ASFV is transmissible through consumption of contaminated feed, the objective of this study was to evaluate the stability of ASFV Georgia 2007 in three feed matrices (complete feed, soybean meal, ground corncobs) exposed to three environmental storage temperatures (40°F, 68°F, 95°F) for up to 365 days. ASFV DNA was highly stable and detectable by qPCR in almost all feed matrices through the conclusion of each study. Infectious ASFV was most stable in soybean meal, maintaining infectivity for at least 112 days at 40°F, at least 21 days at 68°F and at least 7 days at 95°F. These data help define risk of ASFV introduction and transmission through feed ingredients.


Subject(s)
African Swine Fever Virus , African Swine Fever , Swine Diseases , Swine , Animals , African Swine Fever Virus/genetics , Temperature
6.
Proc Natl Acad Sci U S A ; 119(20): e2115354119, 2022 05 17.
Article in English | MEDLINE | ID: mdl-35549551

ABSTRACT

Myxoma virus (MYXV) causes localized cutaneous fibromas in its natural hosts, tapeti and brush rabbits; however, in the European rabbit, MYXV causes the lethal disease myxomatosis. Currently, the molecular mechanisms underlying this increased virulence after cross-species transmission are poorly understood. In this study, we investigated the interaction between MYXV M156 and the host protein kinase R (PKR) to determine their crosstalk with the proinflammatory nuclear factor kappa B (NF-κB) pathway. Our results demonstrated that MYXV M156 inhibits brush rabbit PKR (bPKR) more strongly than European rabbit PKR (ePKR). This moderate ePKR inhibition could be improved by hyperactive M156 mutants. We hypothesized that the moderate inhibition of ePKR by M156 might incompletely suppress the signal transduction pathways modulated by PKR, such as the NF-κB pathway. Therefore, we analyzed NF-κB pathway activation with a luciferase-based promoter assay. The moderate inhibition of ePKR resulted in significantly higher NF-κB­dependent reporter activity than complete inhibition of bPKR. We also found a stronger induction of the NF-κB target genes TNFα and IL-6 in ePKR-expressing cells than in bPKR-expressing cells in response to M156 in both transfection and infections assays. Furthermore, a hyperactive M156 mutant did not cause ePKR-dependent NF-κB activation. These observations indicate that M156 is maladapted for ePKR inhibition, only incompletely blocking translation in these hosts, resulting in preferential depletion of short­half-life proteins, such as the NF-κB inhibitor IκBα. We speculate that this functional activation of NF-κB induced by the intermediate inhibition of ePKR by M156 may contribute to the increased virulence of MYXV in European rabbits.


Subject(s)
Host-Pathogen Interactions , Myxoma virus , Myxomatosis, Infectious , NF-kappa B , Rabbits , eIF-2 Kinase , Animals , Metabolic Networks and Pathways , Myxoma virus/genetics , Myxoma virus/pathogenicity , Myxomatosis, Infectious/metabolism , Myxomatosis, Infectious/virology , NF-KappaB Inhibitor alpha/metabolism , NF-kappa B/metabolism , Rabbits/virology , eIF-2 Kinase/metabolism
7.
J Gen Virol ; 103(5)2022 05.
Article in English | MEDLINE | ID: mdl-35506985

ABSTRACT

CD163, a macrophage-specific membrane scavenger receptor, serves as a cellular entry receptor for porcine reproductive and respiratory syndrome virus (PRRSV). The removal of scavenger receptor cysteine-rich (SRCR) domain 5 (SRCR5) of CD163 is sufficient to make transfected cells or genetically modified pigs resistant to PRRSV-1 and PRRSV-2 genotypes, and substitution of SRCR5 with SRCR8 from human CD163-like protein (hCD163L1) confers resistance to PRRSV-1 but not PRRSV-2 isolates. However, the specific regions within the SRCR5 polypeptide involved in PRRSV infection remain largely unknown. In this report, we performed mutational studies in order to identify which regions or amino acid sequences in the SRCR5 domain are critical for PRRSV infection. The approach used in this study was to make proline-arginine (PR) insertions along the SRCR5 polypeptide. Constructs were transfected into HEK293T cells, and then evaluated for infection with PRRSV-2 or PRRSV-1. For PRRSV-2, four PR insertions located after amino acids 8 (PR-9), 47 (PR-48), 54 (PR-55), and 99 (PR-100) had the greatest impact on infection. For PRRSV-1, insertions after amino acids 57 (PR-58) and 99 (PR-100) were critical. Computer simulations based on the crystal structure of SRCR5 showed that the mutations that affected infection localized to a similar region on the surface of the 3-D structure. Specifically, we found two surface patches that are essential for PRRSV infection. PR-58 and PR-55, which were separated by only three amino acids, had reciprocal effects on PRRSV-1 and PRRSV-2. Substitution of Glu-58 with Lys-58 reduced PRRSV-1 infection without affecting PRRSV-2, which partially explains the resistance to PRRSV-1 caused by the SRCR5 replacement with the homolog human SRCR8 previously observed. Finally, resistance to infection was observed following the disruption of any of the four conserved disulfide bonds within SRCR5. In summary, the results confirm that there are distinct differences between PRRSV-1 and PRRSV-2 on recognition of CD163; however, all mutations that affect infection locate on a similar region on the same face of SRCR5.


Subject(s)
Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Animals , Antigens, CD , Antigens, Differentiation, Myelomonocytic/genetics , Antigens, Differentiation, Myelomonocytic/metabolism , Cysteine/genetics , HEK293 Cells , Humans , Mutation , Porcine Reproductive and Respiratory Syndrome/genetics , Porcine respiratory and reproductive syndrome virus/genetics , Porcine respiratory and reproductive syndrome virus/metabolism , Protein Domains , Receptors, Cell Surface , Receptors, Scavenger/genetics , Swine
8.
Sci Rep ; 12(1): 5009, 2022 03 23.
Article in English | MEDLINE | ID: mdl-35322150

ABSTRACT

Senecavirus A (SVA) is a cause of vesicular disease in pigs, and infection rates are rising within the swine industry. Recently, anthrax toxin receptor 1 (ANTXR1) was revealed as the receptor for SVA in human cells. Herein, the role of ANTXR1 as a receptor for SVA in pigs was investigated by CRISPR/Cas9 genome editing. Strikingly, ANTXR1 knockout (KO) pigs exhibited features consistent with the rare disease, GAPO syndrome, in humans. Fibroblasts from wild type (WT) pigs supported replication of SVA; whereas, fibroblasts from KO pigs were resistant to infection. During an SVA challenge, clinical symptoms, including vesicular lesions, and circulating viremia were present in infected WT pigs but were absent in KO pigs. Additional ANTXR1-edited piglets were generated that were homozygous for an in-frame (IF) mutation. While IF pigs presented a GAPO phenotype similar to the KO pigs, fibroblasts showed mild infection, and circulating SVA nucleic acid was decreased in IF compared to WT pigs. Thus, this new ANTXR1 mutation resulted in decreased permissiveness of SVA in pigs. Overall, genetic disruption of ANTXR1 in pigs provides a unique model for GAPO syndrome and prevents circulating SVA infection and clinical symptoms, confirming that ANTXR1 acts as a receptor for the virus.


Subject(s)
Picornaviridae Infections , Picornaviridae , Swine Diseases , Alopecia , Animals , Anodontia , Growth Disorders , Optic Atrophies, Hereditary , Phenotype , Picornaviridae/genetics , Rare Diseases , Receptors, Peptide , Swine
9.
Narra J ; 2(3): e90, 2022 Dec.
Article in English | MEDLINE | ID: mdl-38449905

ABSTRACT

Infectious threats to humans are continuously emerging. The 2022 worldwide monkeypox outbreak is the latest of these threats with the virus rapidly spreading to 106 countries by the end of September 2022. The burden of the ongoing monkeypox outbreak is manifested by 68,000 cumulative confirmed cases and 26 deaths. Although monkeypox is usually a self-limited disease, patients can suffer from extremely painful skin lesions and complications can occur with reported mortalities. The antigenic similarity between the smallpox virus (variola virus) and monkeypox virus can be utilized to prevent monkeypox using smallpox vaccines; treatment is also based on antivirals initially designed to treat smallpox. However, further studies are needed to fully decipher the immune response to monkeypox virus and the immune evasion mechanisms. In this review we provide an up-to-date discussion of the current state of knowledge regarding monkeypox virus with a special focus on innate immune response, immune evasion mechanisms and vaccination against the virus.

10.
PLoS One ; 16(6): e0253578, 2021.
Article in English | MEDLINE | ID: mdl-34166421

ABSTRACT

RATIONALE: There is little doubt that aerosols play a major role in the transmission of SARS-CoV-2. The significance of the presence and infectivity of this virus on environmental surfaces, especially in a hospital setting, remains less clear. OBJECTIVES: We aimed to analyze surface swabs for SARS-CoV-2 RNA and infectivity, and to determine their suitability for sequence analysis. METHODS: Samples were collected during two waves of COVID-19 at the University of California, Davis Medical Center, in COVID-19 patient serving and staff congregation areas. qRT-PCR positive samples were investigated in Vero cell cultures for cytopathic effects and phylogenetically assessed by whole genome sequencing. MEASUREMENTS AND MAIN RESULTS: Improved cleaning and patient management practices between April and August 2020 were associated with a substantial reduction of SARS-CoV-2 qRT-PCR positivity (from 11% to 2%) in hospital surface samples. Even though we recovered near-complete genome sequences in some, none of the positive samples (11 of 224 total) caused cytopathic effects in cultured cells suggesting this nucleic acid was either not associated with intact virions, or they were present in insufficient numbers for infectivity. Phylogenetic analysis suggested that the SARS-CoV-2 genomes of the positive samples were derived from hospitalized patients. Genomic sequences isolated from qRT-PCR negative samples indicate a superior sensitivity of viral detection by sequencing. CONCLUSIONS: This study confirms the low likelihood that SARS-CoV-2 contamination on hospital surfaces contains infectious virus, disputing the importance of fomites in COVID-19 transmission. Ours is the first report on recovering near-complete SARS-CoV-2 genome sequences directly from environmental surface swabs.


Subject(s)
COVID-19/genetics , Genome, Viral , Hospitals, Teaching , Phylogeny , SARS-CoV-2/genetics , Sequence Analysis, RNA , Animals , COVID-19/epidemiology , COVID-19/transmission , Chlorocebus aethiops , Humans , SARS-CoV-2/isolation & purification , Vero Cells
11.
Transbound Emerg Dis ; 68(2): 477-486, 2021 Mar.
Article in English | MEDLINE | ID: mdl-32613713

ABSTRACT

African swine fever (ASF) is currently considered the most significant global threat to pork production worldwide. Disease caused by the ASF virus (ASFV) results in high case fatality of pigs. Importantly, ASF is a trade-limiting disease with substantial implications on both global pork and agricultural feed commodities. ASFV is transmissible through natural consumption of contaminated swine feed and is broadly stable across a wide range of commonly imported feed ingredients and conditions. The objective of the current study was to investigate the efficacy of medium-chain fatty acid and formaldehyde-based feed additives in inactivating ASFV. Feed additives were tested in cell culture and in feed ingredients under a transoceanic shipment model. Both chemical additives reduced ASFV infectivity in a dose-dependent manner. This study provides evidence that chemical feed additives may potentially serve as mitigants for reducing the risk of ASFV introduction and transmission through feed.


Subject(s)
African Swine Fever Virus/drug effects , African Swine Fever/prevention & control , Animal Feed/analysis , Antiviral Agents/administration & dosage , African Swine Fever/virology , Animals , Chlorocebus aethiops , Fatty Acids , Food Additives , Swine , Vero Cells
12.
Transbound Emerg Dis ; 67(4): 1623-1632, 2020 Jul.
Article in English | MEDLINE | ID: mdl-31999072

ABSTRACT

Classical swine fever virus (CSFV) and pseudorabies virus (PRV) are two of the most significant trade-limiting pathogens affecting swine worldwide. Both viruses are endemic to China where millions of kilograms of feed ingredients are manufactured and subsequently imported into the United States. Although stability and oral transmission of both viruses through contaminated pork products has been demonstrated as a risk factor for transboundary spread, stability in animal feed ingredients had yet to be investigated. The objective of this study was to determine the survival of CSFV and variant PRV in 12 animal feeds and ingredients exposed to environmental conditions simulating a 37-day transpacific shipment. Virus was detected by PCR, virus isolation and nursery pig bioassay. CSFV and PRV nucleic acids were stable throughout the 37-day period in all feed matrices. Infectious CSFV was detected in two ingredients (conventional soybean meal and pork sausage casings) at 37 days post-contamination, whereas infectious PRV was detected in nine ingredients (conventional and organic soybean meal, lysine, choline, vitamin D, moist cat and dog food, dry dog food and pork sausage casings). This study demonstrates the relative stability of CSFV and PRV in different feed ingredients under shipment conditions and provides evidence that feed ingredients may represent important risk factors for the transboundary spread of these viruses.


Subject(s)
Animal Feed/virology , Classical Swine Fever Virus/isolation & purification , Classical Swine Fever/virology , Herpesvirus 1, Suid/isolation & purification , Pseudorabies/virology , Swine Diseases/virology , Transportation , Animals , China , Classical Swine Fever Virus/pathogenicity , Classical Swine Fever Virus/physiology , DNA, Viral/genetics , Food Contamination , Genes, Viral/genetics , Herpesvirus 1, Suid/pathogenicity , Herpesvirus 1, Suid/physiology , Models, Theoretical , Real-Time Polymerase Chain Reaction/veterinary , Risk Assessment , Risk Factors , Swine
13.
Emerg Infect Dis ; 25(12): 2261-2263, 2019 12.
Article in English | MEDLINE | ID: mdl-31524583

ABSTRACT

African swine fever virus is transmissible through animal consumption of contaminated feed. To determine virus survival during transoceanic shipping, we calculated the half-life of the virus in 9 feed ingredients exposed to 30-day shipment conditions. Half-lives ranged from 9.6 to 14.2 days, indicating that the feed matrix environment promotes virus stability.


Subject(s)
African Swine Fever Virus , African Swine Fever/epidemiology , African Swine Fever/virology , Animal Feed/virology , African Swine Fever/transmission , Animals , Environment , Food Contamination , Swine
15.
Emerg Infect Dis ; 25(5): 891-897, 2019 05.
Article in English | MEDLINE | ID: mdl-30761988

ABSTRACT

African swine fever virus (ASFV) is a contagious, rapidly spreading, transboundary animal disease and a major threat to pork production globally. Although plant-based feed has been identified as a potential route for virus introduction onto swine farms, little is known about the risks for ASFV transmission in feed. We aimed to determine the minimum and median infectious doses of the Georgia 2007 strain of ASFV through oral exposure during natural drinking and feeding behaviors. The minimum infectious dose of ASFV in liquid was 100 50% tissue culture infectious dose (TCID50), compared with 104 TCID50 in feed. The median infectious dose was 101.0 TCID50 for liquid and 106.8 TCID50 for feed. Our findings demonstrate that ASFV Georgia 2007 can easily be transmitted orally, although higher doses are required for infection in plant-based feed. These data provide important information that can be incorporated into risk models for ASFV transmission.


Subject(s)
African Swine Fever Virus , African Swine Fever/virology , Animal Feed/virology , African Swine Fever/epidemiology , African Swine Fever/transmission , African Swine Fever Virus/genetics , African Swine Fever Virus/pathogenicity , Animals , Food Microbiology , Georgia , Swine , Virulence
16.
Vet Sci ; 6(1)2019 Jan 17.
Article in English | MEDLINE | ID: mdl-30658381

ABSTRACT

One of the main participants associated with the onset and maintenance of the porcine respiratory disease complex (PRDC) syndrome is porcine reproductive and respiratory syndrome virus (PRRSV), an RNA virus that has plagued the swine industry for 30 years. The development of effective PRRS vaccines, which deviate from live virus designs, would be an important step towards the control of PRRS. Potential vaccine antigens are found in the five surface proteins of the virus, which form covalent and multiple noncovalent interactions and possess hypervariable epitopes. Consequences of this complex surface structure include antigenic variability and escape from immunity, thus presenting challenges in the development of new vaccines capable of generating broadly sterilizing immunity. One potential vaccine target is the induction of antibody that disrupts the interaction between the macrophage CD163 receptor and the GP2, GP3, and GP4 heterotrimer that protrudes from the surface of the virion. Studies to understand this interaction by mapping mutations that appear following the escape of virus from neutralizing antibody identify the ectodomain regions of GP5 and M as important immune sites. As a target for antibody, GP5 possesses a conserved epitope flanked by N-glycosylation sites and hypervariable regions, a pattern of conserved epitopes shared by other viruses. Resolving this apparent conundrum is needed to advance PRRS vaccine development.

18.
PLoS One ; 13(3): e0194509, 2018.
Article in English | MEDLINE | ID: mdl-29558524

ABSTRACT

The goal of this study was to evaluate survival of important viral pathogens of livestock in animal feed ingredients imported daily into the United States under simulated transboundary conditions. Eleven viruses were selected based on global significance and impact to the livestock industry, including Foot and Mouth Disease Virus (FMDV), Classical Swine Fever Virus (CSFV), African Swine Fever Virus (ASFV), Influenza A Virus of Swine (IAV-S), Pseudorabies virus (PRV), Nipah Virus (NiV), Porcine Reproductive and Respiratory Syndrome Virus (PRRSV), Swine Vesicular Disease Virus (SVDV), Vesicular Stomatitis Virus (VSV), Porcine Circovirus Type 2 (PCV2) and Vesicular Exanthema of Swine Virus (VESV). Surrogate viruses with similar genetic and physical properties were used for 6 viruses. Surrogates belonged to the same virus families as target pathogens, and included Senecavirus A (SVA) for FMDV, Bovine Viral Diarrhea Virus (BVDV) for CSFV, Bovine Herpesvirus Type 1 (BHV-1) for PRV, Canine Distemper Virus (CDV) for NiV, Porcine Sapelovirus (PSV) for SVDV and Feline Calicivirus (FCV) for VESV. For the remaining target viruses, actual pathogens were used. Virus survival was evaluated using Trans-Pacific or Trans-Atlantic transboundary models involving representative feed ingredients, transport times and environmental conditions, with samples tested by PCR, VI and/or swine bioassay. SVA (representing FMDV), FCV (representing VESV), BHV-1 (representing PRV), PRRSV, PSV (representing SVDV), ASFV and PCV2 maintained infectivity during transport, while BVDV (representing CSFV), VSV, CDV (representing NiV) and IAV-S did not. Notably, more viruses survived in conventional soybean meal, lysine hydrochloride, choline chloride, vitamin D and pork sausage casings. These results support published data on transboundary risk of PEDV in feed, demonstrate survival of certain viruses in specific feed ingredients ("high-risk combinations") under conditions simulating transport between continents and provide further evidence that contaminated feed ingredients may represent a risk for transport of pathogens at domestic and global levels.


Subject(s)
Animal Feed/virology , Models, Theoretical , Transportation , Viruses/growth & development , Animal Feed/analysis , Animals , Cattle , Cattle Diseases/prevention & control , Cattle Diseases/virology , Risk Assessment/methods , Risk Factors , Swine , Swine Diseases/prevention & control , Swine Diseases/virology , Virus Diseases/prevention & control , Virus Diseases/veterinary , Virus Diseases/virology , Viruses/classification
SELECTION OF CITATIONS
SEARCH DETAIL
...