Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 108
Filter
1.
Medicina (Kaunas) ; 60(5)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38792932

ABSTRACT

Background and Objectives: The influence of montelukast (MK), an antagonist of cysLT1 leukotriene receptors, on lung lesions caused by experimental diabetes was studied. Materials and Methods: The study was conducted on four groups of six adult male Wistar rats. Diabetes was produced by administration of streptozotocin 65 mg/kg ip. in a single dose. Before the administration of streptozotocin, after 72 h, and after 8 weeks, the serum values of glucose, SOD, MDA, and total antioxidant capacity (TAS) were determined. After 8 weeks, the animals were anesthetized and sacrificed, and the lungs were harvested and examined by optical microscopy. Pulmonary fibrosis, the extent of lung lesions, and the lung wet-weight/dry-weight ratio were evaluated. Results: The obtained results showed that MK significantly reduced pulmonary fibrosis (3.34 ± 0.41 in the STZ group vs. 1.73 ± 0.24 in the STZ+MK group p < 0.01) and lung lesion scores and also decreased the lung wet-weight/dry-weight (W/D) ratio. SOD and TAS values increased significantly when MK was administered to animals with diabetes (77.2 ± 11 U/mL in the STZ group vs. 95.7 ± 13.3 U/mL in the STZ+MK group, p < 0.05, and 25.52 ± 2.09 Trolox units in the STZ group vs. 33.29 ± 1.64 Trolox units in the STZ+MK group, respectively, p < 0.01), and MDA values decreased. MK administered alone did not significantly alter any of these parameters in normal animals. Conclusions: The obtained data showed that by blocking the action of peptide leukotrienes on cysLT1 receptors, montelukast significantly reduced the lung lesions caused by diabetes. The involvement of these leukotrienes in the pathogenesis of fibrosis and other lung diabetic lesions was also demonstrated.


Subject(s)
Acetates , Cyclopropanes , Diabetes Mellitus, Experimental , Lung , Quinolines , Rats, Wistar , Sulfides , Cyclopropanes/therapeutic use , Animals , Quinolines/therapeutic use , Quinolines/pharmacology , Acetates/therapeutic use , Acetates/pharmacology , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/physiopathology , Male , Rats , Lung/drug effects , Pulmonary Fibrosis/drug therapy , Leukotriene Antagonists/therapeutic use , Leukotriene Antagonists/pharmacology , Streptozocin , Blood Glucose/analysis , Blood Glucose/drug effects
2.
J Neuroinflammation ; 21(1): 113, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38685031

ABSTRACT

Obesity increases the morbidity and mortality of traumatic brain injury (TBI). Detailed analyses of transcriptomic changes in the brain and adipose tissue were performed to elucidate the interactive effects between high-fat diet-induced obesity (DIO) and TBI. Adult male mice were fed a high-fat diet (HFD) for 12 weeks prior to experimental TBI and continuing after injury. High-throughput transcriptomic analysis using Nanostring panels of the total visceral adipose tissue (VAT) and cellular components in the brain, followed by unsupervised clustering, principal component analysis, and IPA pathway analysis were used to determine shifts in gene expression patterns and molecular pathway activity. Cellular populations in the cortex and hippocampus, as well as in VAT, during the chronic phase after combined TBI-HFD showed amplification of central and peripheral microglia/macrophage responses, including superadditive changes in selected gene expression signatures and pathways. Furthermore, combined TBI and HFD caused additive dysfunction in Y-Maze, Novel Object Recognition (NOR), and Morris water maze (MWM) cognitive function tests. These novel data suggest that HFD-induced obesity and TBI can independently prime and support the development of altered states in brain microglia and VAT, including the disease-associated microglia/macrophage (DAM) phenotype observed in neurodegenerative disorders. The interaction between HFD and TBI promotes a shift toward chronic reactive microglia/macrophage transcriptomic signatures and associated pro-inflammatory disease-altered states that may, in part, underlie the exacerbation of cognitive deficits. Thus, targeting of HFD-induced reactive cellular phenotypes, including in peripheral adipose tissue immune cell populations, may serve to reduce microglial maladaptive states after TBI, attenuating post-traumatic neurodegeneration and neurological dysfunction.


Subject(s)
Brain Injuries, Traumatic , Brain , Cognitive Dysfunction , Diet, High-Fat , Macrophages , Mice, Inbred C57BL , Microglia , Animals , Diet, High-Fat/adverse effects , Microglia/metabolism , Microglia/pathology , Male , Mice , Cognitive Dysfunction/etiology , Cognitive Dysfunction/pathology , Cognitive Dysfunction/metabolism , Macrophages/metabolism , Macrophages/pathology , Brain Injuries, Traumatic/pathology , Brain Injuries, Traumatic/metabolism , Brain/pathology , Brain/metabolism , Adipose Tissue/metabolism , Adipose Tissue/pathology , Recognition, Psychology/physiology , Obesity/pathology , Obesity/complications , Maze Learning/physiology
3.
Medicina (Kaunas) ; 59(11)2023 Nov 08.
Article in English | MEDLINE | ID: mdl-38004021

ABSTRACT

Background and Objectives: Urosepsis is a significant cause of maternal and fetal mortality. While certain risk factors for urinary tract infections (UTIs) in pregnant women are well established, those associated with an elevated risk of urosepsis in pregnant women with upper UTIs remain less defined. This study aims to identify factors linked to an increased risk of urosepsis and examine urologic treatment outcomes in such cases. Materials and Methods: We conducted a retrospective analysis on 66 pregnant women diagnosed with urosepsis over a nine-year period. A control group included 164 pregnant women with upper UTIs, excluding urosepsis, admitted during the same timeframe. This study highlights factors potentially contributing to urosepsis risk, including comorbidities like anemia, pregnancy-related hydronephrosis or secondary to reno-ureteral lithiasis, prior UTIs, coexisting urological conditions, and urologic procedures. Outcomes of urologic treatments, hospitalization duration, obstetric transfers due to fetal distress, and complications associated with double-J catheters were analyzed. Results: Pregnant women with urosepsis exhibited a higher prevalence of anemia (69.7% vs. 50.0%, p = 0.006), 2nd-3rd grade hydronephrosis (81.8% vs. 52.8%, p = 0.001), and fever over 38 °C (89.4% vs. 42.1%, p = 0.001). They also had a more intense inflammatory syndrome (leukocyte count 18,191 ± 6414 vs. 14,350 ± 3860/mmc, p = 0.001, and C-reactive protein (CRP) 142.70 ± 83.50 vs. 72.76 ± 66.37 mg/dL, p = 0.001) and higher creatinine levels (0.77 ± 0.81 vs. 0.59 ± 0.22, p = 0.017). On multivariate analysis, factors associated with increased risk for urosepsis were anemia (Odds Ratio (OR) 2.622, 95% CI 1.220-5.634), 2nd-3rd grade hydronephrosis (OR 6.581, 95% CI 2.802-15.460), and fever over 38 °C (OR 11.612, 95% CI 4.804-28.07). Regarding outcomes, the urosepsis group had a higher rate of urological maneuvers (87.9% vs. 36%, p = 0.001), a higher rate of obstetric transfers due to fetal distress (22.7% vs. 1.2%, p = 0.001), and migration of double-J catheters (6.1% vs. 0.6%, p = 0.016), but no maternal fatality was encountered. However, they experienced the same rate of total complications related to double-J catheters (19.69% vs. 12.80%, p > 0.05). The pregnant women in both groups had the infection more frequently on the right kidney, were in the second trimester and were nulliparous. Conclusions: Pregnant women at increased risk for urosepsis include those with anemia, hydronephrosis due to gestational, or reno-ureteral lithiasis, and fever over 38 °C. While the prognosis for pregnant women with urosepsis is generally favorable, urological intervention may not prevent a higher incidence of fetal distress and the need for obstetric transfers compared to pregnant women with uncomplicated upper UTIs.


Subject(s)
Anemia , Hydronephrosis , Lithiasis , Urinary Tract Infections , Urology , Pregnancy , Humans , Female , Retrospective Studies , Fetal Distress/complications , Lithiasis/complications , Urinary Tract Infections/complications , Urinary Tract Infections/epidemiology , Risk Factors , Treatment Outcome , Hydronephrosis/complications , Anemia/complications , Anemia/epidemiology
4.
Pak J Pharm Sci ; 36(2): 507-513, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37530159

ABSTRACT

Leukotrienes are important icosanoids group involved in a lot of normal and pathological states. Montelukast (MK) is a selective cysteinyl leukotriene receptor (Cys LT1) antagonist. Purpose. The purpose of the study is to observe the influence of MK on renal damage caused by experimental diabetes in rats. The experiment was carried out on four groups of adult male Wistar rats. Lot I was a witness and received 1.5ml of physiological saline ip. in unique dose on the first day of the experiment. Lots II and III have been caused experimental diabetes by streptozotocin (STZ) administration of 60mg/kg ip. in the unique dose. Lot III also received MK daily 10mg/kg/day daily 8weeks.Lot IV received only MK 10mg/kg/day daily 8 weeks. After eight weeks all animals were anesthetized and were sacrificed. The following pathological modifications were observed: tubular injury, glomerular hypertrophy and lesions, leukocytes infiltration. Obtained data showed that MK has significantly reduced the intensity of glomerular lesions (score 3.50+/-0.21 in STZ lot vs. 2.50+/-0.17 in STZ+MK lot p<0.01) and tubular damages. Renal interstitial leukocyte infiltration in animals with diabetes has been also reduced by MK. MK has a partially protective action against the lesions produced by experimental diabetes.


Subject(s)
Diabetes Mellitus, Experimental , Quinolines , Rats , Male , Animals , Rats, Wistar , Leukotriene Antagonists/pharmacology , Kidney , Leukotrienes , Acetates/pharmacology , Quinolines/pharmacology , Cyclopropanes , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/pathology
5.
Antibiotics (Basel) ; 12(8)2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37627652

ABSTRACT

The limited antifungal drugs available and the rise of multidrug-resistant Candida species have made the efforts to improve antifungal therapies paramount. To this end, our research focused on the effect of a combined treatment between chemical and photodynamic therapy (PDT) towards a fluconazole-resistant clinical Candida albicans strain. The co-treatment of PDT and curcumin in various doses with fluconazole (FLC) had an inhibitory effect on the growth of the FLC-resistant hospital strain of C. albicans in both difusimetric and broth microdilution methods. The proliferation of the cells was inhibited in the presence of curcumin at 3.125 µM and FLC at 41 µM concentrations. The possible involvement of oxidative stress was analyzed by adding menadione and glutathione as a prooxidant and antioxidant, respectively. In addition, we examined the photoactivated curcumin effect on efflux pumps, a mechanism often linked to drug resistance. Nile Red accumulation assays were used to evaluate efflux pumps activity through fluorescence microscopy and spectrofluorometry. The results showed that photoactivated curcumin at 3.125 µM inhibited the transport of the fluorescent substrate that cells usually expel, indicating its potential in combating drug resistance. Overall, the findings suggest that curcumin, particularly when combined with PDT, can effectively inhibit the growth of FLC-resistant C. albicans, addressing the challenge of yeast resistance to azole antifungals through upregulating multidrug transporters.

6.
bioRxiv ; 2023 Jul 29.
Article in English | MEDLINE | ID: mdl-37546932

ABSTRACT

Obesity increases the morbidity and mortality of traumatic brain injury (TBI). We performed a detailed analysis of transcriptomic changes in the brain and adipose tissue to examine the interactive effects between high-fat diet-induced obesity (DIO) and TBI in relation to central and peripheral inflammatory pathways, as well as neurological function. Adult male mice were fed a high-fat diet (HFD) for 12 weeks prior to experimental TBI and continuing after injury. Combined TBI and HFD resulted in additive dysfunction in the Y-Maze, novel object recognition (NOR), and Morris water maze (MWM) cognitive function tests. We also performed high-throughput transcriptomic analysis using Nanostring panels of cellular compartments in the brain and total visceral adipose tissue (VAT), followed by unsupervised clustering, principal component analysis, and IPA pathway analysis to determine shifts in gene expression programs and molecular pathway activity. Analysis of cellular populations in the cortex and hippocampus as well as in visceral adipose tissue during the chronic phase after combined TBI-HFD showed amplification of central and peripheral microglia/macrophage responses, including superadditive changes in select gene expression signatures and pathways. These data suggest that HFD-induced obesity and TBI can independently prime and support the development of altered states in brain microglia and visceral adipose tissue macrophages, including the disease-associated microglia/macrophage (DAM) phenotype observed in neurodegenerative disorders. The interaction between HFD and TBI promotes a shift toward chronic reactive microglia/macrophage transcriptomic signatures and associated pro-inflammatory disease-altered states that may, in part, underlie the exacerbation of cognitive deficits. Targeting of HFD-induced reactive cellular phenotypes, including in peripheral adipose tissue macrophages, may serve to reduce microglial maladaptive states after TBI, attenuating post-traumatic neurodegeneration and neurological dysfunction.

7.
Sci Adv ; 9(10): eadd1101, 2023 03 10.
Article in English | MEDLINE | ID: mdl-36888713

ABSTRACT

Lipofuscin is an autofluorescent (AF) pigment formed by lipids and misfolded proteins, which accumulates in postmitotic cells with advanced age. Here, we immunophenotyped microglia in the brain of old C57BL/6 mice (>18 months old) and demonstrate that in comparison to young mice, one-third of old microglia are AF, characterized by profound changes in lipid and iron content, phagocytic activity, and oxidative stress. Pharmacological depletion of microglia in old mice eliminated the AF microglia following repopulation and reversed microglial dysfunction. Age-related neurological deficits and neurodegeneration after traumatic brain injury (TBI) were attenuated in old mice lacking AF microglia. Furthermore, increased phagocytic activity, lysosomal burden, and lipid accumulation in microglia persisted for up to 1 year after TBI, were modified by APOE4 genotype, and chronically driven by phagocyte-mediated oxidative stress. Thus, AF may reflect a pathological state in aging microglia associated with increased phagocytosis of neurons and myelin and inflammatory neurodegeneration that can be further accelerated by TBI.


Subject(s)
Brain Injuries, Traumatic , Brain Injuries , Animals , Mice , Microglia/metabolism , Mice, Inbred C57BL , Brain Injuries/complications , Brain Injuries/metabolism , Brain Injuries/pathology , Brain Injuries, Traumatic/complications , Brain/metabolism , Phenotype , Lipids
8.
Antibiotics (Basel) ; 12(2)2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36830311

ABSTRACT

Mitocurcumin (a triphenylphosphonium curcumin derivative) was previously reported as a selective antitumoral compound on different cellular lines, as well as a potent bactericidal candidate. In this study, the same compound showed strong antimicrobial efficacy against different strains of methicillin-resistant Staphylococcus aureus (MRSA). The minimum inhibitory concentration was identical for all tested strains (four strains of MRSA and one strain of methicillin-sensitive Staphylococcus aureus), suggesting a new mechanism of action compared with usual antibacterial agents. All tested strains showed a significant sensitivity in the low micromolar range for the curcumin-triphenylphosphonium derivative. This susceptibility was modulated by the menadione/glutathione addition (the addition of glutathione resulted in a significant increase in minimal inhibitory concentration from 1.95 to 3.9 uM, whereas adding menadione resulted in a decrease of 0.49 uM). The fluorescence microscopy showed a better intrabacterial accumulation for the new curcumin-triphenylphosphonium derivative compared with simple curcumin. The MitoTracker staining showed an accumulation of reactive oxygen species (ROS) for a S. pombe superoxide dismutase deleted model. All results suggest a new mechanism of action which is not influenced by the acquired resistance of MRSA. The most plausible mechanism is reactive oxygen species (ROS) overproduction after a massive intracellular accumulation of the curcumin-triphenylphosphonium derivative.

9.
Chirurgia (Bucur) ; 116(6): 725-736, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34967717

ABSTRACT

Introduction: The study is presenting a personal experience of a Trauma Centre Level I and is try to conclude on optimal medical attitude for patients with retroperitoneal hematoma, still a controversial topic for traumatologists. Material and Method: A retrospective analysis of 22 cases of post-traumatic retroperitoneal hematoma admitted on Bucharest Emergency Hospital between September 2018 August 2021 (including time of Covid-19 pandemic), is presented Results: The patients (males predominance, mean age 43, mean ISS of 23), benefited of nonoperative management on admission for 10 cases (45%) with a failure rate of 4/10 due to recurrent bleeding from spleen injuries and continuous bleeding from mesenteric vessels lesions. CT scan (73% - 16 cases) within 1 hour from the admission and emergency surgery were necessary for 12 cases (55%). 2 patients benefited of angioembolization on admission. Conservative attitude for retroperitoneal hematoma was adopted for 72% cases. Over-all mortality: 18% (4 patients, mean ISS of 36), among 82% polytrauma cases. Conclusions: Algorithm of treatment is adapted to every case of retroperitoneal hematoma but the following sequences are mandatory: rapid transportation to Trauma Centre Level I with medical help, correct resuscitation, immediate relevant imagistic (CT scan), emergency surgery prior to angioembolization (for hemodynamic instable patients) or after it, ICU stabilization of the patient and then definitive repair of the injuries. Despite all, mortality remains high.


Subject(s)
Abdominal Injuries , COVID-19 , Wounds, Nonpenetrating , Abdominal Injuries/complications , Abdominal Injuries/therapy , Adult , Gastrointestinal Hemorrhage , Hematoma/diagnostic imaging , Hematoma/etiology , Hematoma/surgery , Humans , Male , Pandemics , Retrospective Studies , SARS-CoV-2 , Treatment Outcome , Wounds, Nonpenetrating/complications , Wounds, Nonpenetrating/diagnostic imaging , Wounds, Nonpenetrating/therapy
10.
Front Immunol ; 12: 710608, 2021.
Article in English | MEDLINE | ID: mdl-34504493

ABSTRACT

Aging adversely affects inflammatory processes in the brain, which has important implications in the progression of neurodegenerative disease. Following traumatic brain injury (TBI), aged animals exhibit worsened neurological function and exacerbated microglial-associated neuroinflammation. Type I Interferons (IFN-I) contribute to the development of TBI neuropathology. Further, the Cyclic GMP-AMP Synthase (cGAS) and Stimulator of Interferon Genes (STING) pathway, a key inducer of IFN-I responses, has been implicated in neuroinflammatory activity in several age-related neurodegenerative diseases. Here, we set out to investigate the effects of TBI on cGAS/STING activation, IFN-I signaling and neuroinflammation in young and aged C57Bl/6 male mice. Using a controlled cortical impact model, we evaluated transcriptomic changes in the injured cortex at 24 hours post-injury, and confirmed activation of key neuroinflammatory pathways in biochemical studies. TBI induced changes were highly enriched for transcripts that were involved in inflammatory responses to stress and host defense. Deeper analysis revealed that TBI increased expression of IFN-I related genes (e.g. Ifnb1, Irf7, Ifi204, Isg15) and IFN-I signaling in the injured cortex of aged compared to young mice. There was also a significant age-related increase in the activation of the DNA-recognition pathway, cGAS, which is a key mechanism to propagate IFN-I responses. Finally, enhanced IFN-I signaling in the aged TBI brain was confirmed by increased phosphorylation of STAT1, an important IFN-I effector molecule. This age-related activation of cGAS and IFN-I signaling may prove to be a mechanistic link between microglial-associated neuroinflammation and neurodegeneration in the aged TBI brain.


Subject(s)
Aging/immunology , Brain Injuries, Traumatic/immunology , Interferon Type I/physiology , Nucleotidyltransferases/metabolism , Aging/metabolism , Animals , Enzyme Activation , Interferon Type I/genetics , Male , Membrane Proteins/physiology , Mice , Mice, Inbred C57BL , Microglia/physiology , Neurodegenerative Diseases/etiology , Neuroinflammatory Diseases/etiology , Signal Transduction/physiology
11.
Diagnostics (Basel) ; 11(6)2021 May 29.
Article in English | MEDLINE | ID: mdl-34072541

ABSTRACT

Diabetic ketoacidosis (DKA) is a lethal acute hyperglycemic complication of diabetes mellitus (DM) and it represents the initial manifestation of DM in about 15-20% of cases in adults and about 30-40% of cases in children. Postmortem diagnosis of DKA can only be made by applying thanatochemistry. Biochemistry applied postmortem is viewed with skepticism by many practitioners in the forensic field, completely lacking in many forensic services around the world, and especially in the national ones. This article aims to underline the importance of the postmortem application of biochemistry by reviewing the case of a person in the third decade of life who died suddenly at home due to diabetic ketoacidosis (DKA), whose autopsy was performed at an early PMI of approximately 24 h. Routine postmortem examinations (macroscopic, anatomopathological, and toxicological) could not establish a clear cause of death. When attention was turned to biochemical determinations (i.e., determination of glycated hemoglobin, glucose and ketone bodies (acetone, beta-hydroxybutyrate) in the blood, vitreous humor, and cerebrospinal fluid), the identified values clarified the thanatogenic mechanisms by establishing the diagnosis of DKA.

12.
Medicina (Kaunas) ; 57(4)2021 Apr 02.
Article in English | MEDLINE | ID: mdl-33918183

ABSTRACT

Background and objectives. In forensic medicine, the postmortem determination of glycated hemoglobin (HbA1c) helps identify undiagnosed cases of diabetes or cases with uncontrolled glycemic status. In order to contribute to the solidification of thanatochemistry, both globally and especially nationally, we aimed to determine this biomarker postmortem, for the first time in our institution, in order to identify undiagnosed pre-mortem diabetics, as well as those with inadequate glycemic control. Materials and Methods. Our research consisted of analyzing a total number of 180 HbA1c values, 90 determinations from the peripheral blood and 90 from the central blood. The determination of HbA1c was performed by means of a fully automatic analyzer (HemoCue HbA1c 501), certified by the National Glycohemoglobin Standardization Program (NGSP)/Diabetes Control and Complications Trial (DCCT) and calibrated according to the standards developed by the International Federation of Clinical Chemistry (IFCC). According to ADA criteria, HbA1c values can provide us with the following information about the diagnosis of diabetes: normal 4.8-5.6%; prediabetes 5.7-6.4%; diabetes ≥ 6.5%. Results. A considerable number of cases with an altered glycemic status (cases that had HbA1c values equal to or greater than 5.7%) were identified-51% demonstrable by peripheral blood determinations and 41% by central blood determinations. Notably, 23 people with diabetes (25%) were identified by analyzing the peripheral blood; 18 other people with diabetes (20%) were identified by analyzing the central blood. Conclusions. Our study managed to confirm the antemortem diagnosis of DM using a simple point-of-care analyzer and applying standardized and certified criteria on HbA1c levels measured postmortem. We also identified a considerable number of cases with DM in patients with no antemortem history of glucose imbalance-at least 20% more cases. Although the two different sites used for blood collection showed a strong statistical correlation, it seems that the peripheral site could have a higher sensibility in detecting postmortem altered glycemic status.


Subject(s)
Diabetes Complications , Diabetes Mellitus , Blood Glucose , Diabetes Mellitus/diagnosis , Glycated Hemoglobin/analysis , Hematologic Tests , Humans
13.
Trends Neurosci ; 44(5): 406-418, 2021 05.
Article in English | MEDLINE | ID: mdl-33495023

ABSTRACT

Traumatic brain injury (TBI) is a debilitating disorder associated with chronic progressive neurodegeneration and long-term neurological decline. Importantly, there is now substantial and increasing evidence that TBI can negatively impact systemic organs, including the pulmonary, gastrointestinal (GI), cardiovascular, renal, and immune system. Less well appreciated, until recently, is that such functional changes can affect both the response to subsequent insults or diseases, as well as contribute to chronic neurodegenerative processes and long-term neurological outcomes. In this review, we summarize evidence showing bidirectional interactions between the brain and systemic organs following TBI and critically assess potential underlying mechanisms.


Subject(s)
Brain Injuries, Traumatic , Cognitive Dysfunction , Animals , Brain , Humans , Mice , Mice, Inbred C57BL
14.
J Neurochem ; 156(2): 225-248, 2021 01.
Article in English | MEDLINE | ID: mdl-31926033

ABSTRACT

We have previously shown that treatment with a mGluR5 positive allosteric modulator (PAM) is neuroprotective after experimental traumatic brain injury (TBI), limiting post-traumatic neuroinflammation by reducing pro-inflammatory microglial activation and promoting anti-inflammatory and neuroprotective responses. However, the specific molecular mechanisms governing this anti-inflammatory shift in microglia remain unknown. Here we show that the mGluR5 PAM, VU0360172 (VuPAM), regulates microglial inflammatory responses through activation of Akt, resulting in the inhibition of GSK-3ß. GSK-3ß regulates the phosphorylation of CREB, thereby controlling the expression of inflammation-related genes and microglial plasticity. The anti-inflammatory action of VuPAM in microglia is reversed by inhibiting Akt/GSK-3ß/CREB signaling. Using a well-characterized TBI model and CX3CR1gfp/+ mice to visualize microglia in vivo, we demonstrate that VuPAM enhances Akt/GSK-3ß/CREB signaling in the injured cortex, as well as anti-inflammatory microglial markers. Furthermore, in situ analysis revealed that GFP + microglia in the cortex of VuPAM-treated TBI mice co-express pCREB and the anti-inflammatory microglial phenotype marker YM1. Taken together, our data show that VuPAM decreases pro-inflammatory microglial activation by modulating Akt/GSK-3ß/CREB signaling. These findings serve to clarify the potential neuroprotective mechanisms of mGluR5 PAM treatment after TBI, and suggest novel therapeutic targets for post-traumatic neuroinflammation. Cover Image for this issue: https://doi.org/10.1111/jnc.15048.


Subject(s)
Brain Injuries, Traumatic/metabolism , Microglia/drug effects , Neuroprotective Agents/pharmacology , Niacinamide/analogs & derivatives , Receptor, Metabotropic Glutamate 5/drug effects , Signal Transduction/drug effects , Animals , Anti-Inflammatory Agents/pharmacology , Cyclic AMP Response Element-Binding Protein/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Male , Mice , Microglia/metabolism , Niacinamide/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Rats , Rats, Sprague-Dawley , Receptor, Metabotropic Glutamate 5/metabolism , Signal Transduction/physiology
15.
Eur J Ophthalmol ; 31(1): 34-41, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32927961

ABSTRACT

Orbital apex syndrome (OAS) can be a rare, but severe complication of an odontogenic infection and has high morbidity and mortality. Antibacterial drugs are typically an appropriate treatment choice, but the most severe cases are fungal in nature and pose a tough challenge to the clinician. The aim of this study was to determine the predisposing factors, specific aspects in its management and the appropriate treatment strategy in order to improve patient outcome. A systematic review was conducted using PubMed, PubMed Central, Web of Science, and Scopus up to February 2020, based on the associations between dental extraction or infections and OAS. Of 721 papers found, 18 articles were considered eligible and presented in total 21 cases (13 fungal and eight bacterial infections). The information was organized into a diagnostic and treatment algorithm which included data extracted both from the included cases and updated literature of treatment efficacy studies. Immunosuppression (uncontrolled diabetes mellitus and chemotherapy) was found as an important predisposing factor particularly for fungal infections. In these cases, we suggest that early simultaneous approaches, including aggressive surgical procedures and systemic administration of amphotericin B, result in a better outcome. In conclusion, medical intervention success depends on aggressive treatment and multidisciplinary teamwork.


Subject(s)
Algorithms , Decision Support Techniques , Eye Infections, Bacterial/etiology , Eye Infections, Fungal/etiology , Focal Infection, Dental/complications , Orbital Diseases/etiology , Amphotericin B/therapeutic use , Antifungal Agents/therapeutic use , Clinical Decision-Making , Eye Infections, Bacterial/diagnosis , Eye Infections, Bacterial/drug therapy , Eye Infections, Fungal/diagnosis , Eye Infections, Fungal/drug therapy , Host-Pathogen Interactions , Humans , Orbital Diseases/diagnosis , Orbital Diseases/drug therapy
16.
Brain Behav Immun ; 92: 165-183, 2021 02.
Article in English | MEDLINE | ID: mdl-33307173

ABSTRACT

Extracellular vesicles (EVs) have been implicated mechanistically in the pathobiology of neurodegenerative disorders, including central nervous system injury. However, the role of EVs in spinal cord injury (SCI) has received limited attention to date. Moreover, technical limitations related to EV isolation and characterization methods can lead to misleading or contradictory findings. Here, we examined changes in plasma EVs after mouse SCI at multiple timepoints (1d, 3d, 7d, 14d) using complementary measurement techniques. Plasma EVs isolated by ultracentrifugation (UC) were decreased at 1d post-injury, as shown by nanoparticle tracking analysis (NTA), and paralleled an overall reduction in total plasma extracellular nanoparticles. Western blot (WB) analysis of UC-derived plasma EVs revealed increased expression of the tetraspanin exosome marker, CD81, between 1d and 7d post-injury. To substantiate these findings, we performed interferometric and fluorescence imaging of single, tetraspanin EVs captured directly from plasma with ExoView®. Consistent with WB, we observed significantly increased plasma CD81+ EV count and cargo at 1d post-injury. The majority of these tetraspanin EVs were smaller than 50 nm based on interferometry and were insufficiently resolved by flow cytometry-based detection. At the injury site, there was enhanced expression of EV biogenesis proteins that were also detected in EVs directly isolated from spinal cord tissue by WB. Surface expression of tetraspanins CD9 and CD63 increased in multiple cell types at the injury site; however, astrocyte CD81 expression uniquely decreased, as demonstrated by flow cytometry. UC-isolated plasma EV microRNA cargo was also significantly altered at 1d post-injury with changes similar to that reported in EVs released by astrocytes after inflammatory stimulation. When injected into the lateral ventricle, plasma EVs from SCI mice increased both pro- and anti-inflammatory gene as well as reactive astrocyte gene expression in the brain cortex. These studies provide the first detailed characterization of plasma EV dynamics after SCI and suggest that plasma EVs may be involved in posttraumatic brain inflammation.


Subject(s)
Exosomes , Extracellular Vesicles , MicroRNAs , Nanoparticles , Spinal Cord Injuries , Animals , Mice
17.
Glia ; 69(3): 746-764, 2021 03.
Article in English | MEDLINE | ID: mdl-33090575

ABSTRACT

Acidosis is among the least studied secondary injury mechanisms associated with neurotrauma. Acute decreases in brain pH correlate with poor long-term outcome in patients with traumatic brain injury (TBI), however, the temporal dynamics and underlying mechanisms are unclear. As key drivers of neuroinflammation, we hypothesized that microglia directly regulate acidosis after TBI, and thereby, worsen neurological outcomes. Using a controlled cortical impact model in adult male mice we demonstrate that intracellular pH in microglia and extracellular pH surrounding the lesion site are significantly reduced for weeks after injury. Microglia proliferation and production of reactive oxygen species (ROS) were also increased during the first week, mirroring the increase in extracellular ROS levels seen around the lesion site. Microglia depletion by a colony stimulating factor 1 receptor (CSF1R) inhibitor, PLX5622, markedly decreased extracellular acidosis, ROS production, and inflammation in the brain after injury. Mechanistically, we identified that the voltage-gated proton channel Hv1 promotes oxidative burst activity and acid extrusion in microglia. Compared to wildtype controls, microglia lacking Hv1 showed reduced ability to generate ROS and extrude protons. Importantly, Hv1-deficient mice exhibited reduced pathological acidosis and inflammation after TBI, leading to long-term neuroprotection and functional recovery. Our data therefore establish the microglial Hv1 proton channel as an important link that integrates inflammation and acidosis within the injury microenvironment during head injury.


Subject(s)
Acidosis , Brain Injuries, Traumatic , Animals , Brain Injuries, Traumatic/complications , Humans , Inflammation , Ion Channels/metabolism , Male , Mice , Mice, Inbred C57BL , Microglia/metabolism , Neuroinflammatory Diseases , Protons , Reactive Oxygen Species/metabolism , Respiratory Burst
18.
Theranostics ; 10(25): 11376-11403, 2020.
Article in English | MEDLINE | ID: mdl-33052221

ABSTRACT

Neuropsychological deficits, including impairments in learning and memory, occur after spinal cord injury (SCI). In experimental SCI models, we and others have reported that such changes reflect sustained microglia activation in the brain that is associated with progressive neurodegeneration. In the present study, we examined the effect of pharmacological depletion of microglia on posttraumatic cognition, depressive-like behavior, and brain pathology after SCI in mice. Methods: Young adult male C57BL/6 mice were subjected to moderate/severe thoracic spinal cord contusion. Microglial depletion was induced with the colony-stimulating factor 1 receptor (CSF1R) antagonist PLX5622 administered starting either 3 weeks before injury or one day post-injury and continuing through 6 weeks after SCI. Neuroinflammation in the injured spinal cord and brain was assessed using flow cytometry and NanoString technology. Neurological function was evaluated using a battery of neurobehavioral tests including motor function, cognition, and depression. Lesion volume and neuronal counts were quantified by unbiased stereology. Results: Flow cytometry analysis demonstrated that PLX5622 pre-treatment significantly reduced the number of microglia, as well as infiltrating monocytes and neutrophils, and decreased reactive oxygen species production in these cells from injured spinal cord at 2-days post-injury. Post-injury PLX5622 treatment reduced both CD45int microglia and CD45hi myeloid counts at 7-days. Following six weeks of PLX5622 treatment, there were substantial changes in the spinal cord and brain transcriptomes, including those involved in neuroinflammation. These alterations were associated with improved neuronal survival in the brain and neurological recovery. Conclusion: These findings indicate that pharmacological microglia-deletion reduces neuroinflammation in the injured spinal cord and brain, improving recovery of cognition, depressive-like behavior, and motor function.


Subject(s)
Brain/drug effects , Cognitive Dysfunction/prevention & control , Microglia/drug effects , Organic Chemicals/administration & dosage , Spinal Cord Injuries/drug therapy , Administration, Oral , Animals , Behavior Observation Techniques , Behavior, Animal/drug effects , Behavior, Animal/physiology , Brain/cytology , Brain/immunology , Brain/pathology , Cognitive Dysfunction/immunology , Cognitive Dysfunction/pathology , Cognitive Dysfunction/physiopathology , Depression/diagnosis , Depression/etiology , Depression/prevention & control , Disease Models, Animal , Humans , Inflammation/drug therapy , Inflammation/pathology , Inflammation/physiopathology , Learning/drug effects , Learning/physiology , Male , Memory/drug effects , Memory/physiology , Mice , Microglia/immunology , Microglia/pathology , Motor Activity/drug effects , Motor Activity/physiology , Reactive Oxygen Species/metabolism , Spinal Cord/drug effects , Spinal Cord/immunology , Spinal Cord/pathology , Spinal Cord Injuries/complications , Spinal Cord Injuries/immunology , Spinal Cord Injuries/pathology
19.
Int J Mol Sci ; 21(15)2020 Jul 23.
Article in English | MEDLINE | ID: mdl-32718090

ABSTRACT

Radiotherapy for brain tumors induces neuronal DNA damage and may lead to neurodegeneration and cognitive deficits. We investigated the mechanisms of radiation-induced neuronal cell death and the role of miR-711 in the regulation of these pathways. We used in vitro and in vivo models of radiation-induced neuronal cell death. We showed that X-ray exposure in primary cortical neurons induced activation of p53-mediated mechanisms including intrinsic apoptotic pathways with sequential upregulation of BH3-only molecules, mitochondrial release of cytochrome c and AIF-1, as well as senescence pathways including upregulation of p21WAF1/Cip1. These pathways of irradiation-induced neuronal apoptosis may involve miR-711-dependent downregulation of pro-survival genes Akt and Ang-1. Accordingly, we demonstrated that inhibition of miR-711 attenuated degradation of Akt and Ang-1 mRNAs and reduced intrinsic apoptosis after neuronal irradiation; likewise, administration of Ang-1 was neuroprotective. Importantly, irradiation also downregulated two novel miR-711 targets, DNA-repair genes Rad50 and Rad54l2, which may impair DNA damage responses, amplifying the stimulation of apoptotic and senescence pathways and contributing to neurodegeneration. Inhibition of miR-711 rescued Rad50 and Rad54l2 expression after neuronal irradiation, enhancing DNA repair and reducing p53-dependent apoptotic and senescence pathways. Significantly, we showed that brain irradiation in vivo persistently elevated miR-711, downregulated its targets, including pro-survival and DNA-repair molecules, and is associated with markers of neurodegeneration, not only across the cortex and hippocampus but also specifically in neurons isolated from the irradiated brain. Our data suggest that irradiation-induced miR-711 negatively modulates multiple pro-survival and DNA-repair mechanisms that converge to activate neuronal intrinsic apoptosis and senescence. Using miR-711 inhibitors to block the development of these regulated neurodegenerative pathways, thus increasing neuronal survival, may be an effective neuroprotective strategy.


Subject(s)
DNA Repair/radiation effects , MicroRNAs/biosynthesis , Neurodegenerative Diseases/metabolism , Neurons/metabolism , Radiation Injuries, Experimental/metabolism , Up-Regulation/radiation effects , X-Rays/adverse effects , Animals , Cell Death/radiation effects , DNA Damage , Male , Mice , Neurodegenerative Diseases/etiology , Neurodegenerative Diseases/pathology , Neurons/pathology , Radiation Injuries, Experimental/pathology
20.
Cell Death Dis ; 11(7): 587, 2020 07 27.
Article in English | MEDLINE | ID: mdl-32719328

ABSTRACT

DNA damage triggers cell death mechanisms contributing to neuronal loss and cognitive decline in neurological disorders, including traumatic brain injury (TBI), and as a side effect of chemotherapy. Mithramycin, which competitively targets chromatin-binding sites of specificity protein 1 (Sp1), was used to examine previously unexplored neuronal cell death regulatory mechanisms via rat primary neurons in vitro and after TBI in mice (males). In primary neurons exposed to DNA-damage-inducing chemotherapy drugs in vitro we showed that DNA breaks sequentially initiate DNA-damage responses, including phosphorylation of ATM, H2AX and tumor protein 53 (p53), transcriptional activation of pro-apoptotic BH3-only proteins, and mitochondrial outer membrane permeabilization (MOMP), activating caspase-dependent and caspase-independent intrinsic apoptosis. Mithramycin was highly neuroprotective in DNA-damage-dependent neuronal cell death, inhibiting chemotherapeutic-induced cell death cascades downstream of ATM and p53 phosphorylation/activation but upstream of p53-induced expression of pro-apoptotic molecules. Mithramycin reduced neuronal upregulation of BH3-only proteins and mitochondrial dysfunction, attenuated caspase-3/7 activation and caspase substrates' cleavage, and limited c-Jun activation. Chromatin immunoprecipitation indicated that mithramycin attenuates Sp1 binding to pro-apoptotic gene promoters without altering p53 binding suggesting it acts by removing cofactors required for p53 transactivation. In contrast, the DNA-damage-independent neuronal death models displayed caspase initiation in the absence of p53/BH3 activation and were not protected even when mithramycin reduced caspase activation. Interestingly, experimental TBI triggers a multiplicity of neuronal death mechanisms. Although markers of DNA-damage/p53-dependent intrinsic apoptosis are detected acutely in the injured cortex and are attenuated by mithramycin, these processes may play a reduced role in early neuronal death after TBI, as caspase-dependent mechanisms are repressed in mature neurons while other, mithramycin-resistant mechanisms are active. Our data suggest that Sp1 is required for p53-mediated transactivation of neuronal pro-apoptotic molecules and that mithramycin may attenuate neuronal cell death in conditions predominantly involving DNA-damage-induced p53-dependent intrinsic apoptosis.


Subject(s)
DNA Damage , Neurons/pathology , Plicamycin/pharmacology , Animals , Apoptosis/drug effects , Biomarkers/metabolism , Brain Injuries, Traumatic/drug therapy , Brain Injuries, Traumatic/pathology , Cell Death/drug effects , Etoposide/pharmacology , Male , Mice, Inbred C57BL , Mitochondria/drug effects , Mitochondria/metabolism , Models, Biological , Neurons/drug effects , Neuroprotective Agents/pharmacology , Plicamycin/therapeutic use , Proto-Oncogene Proteins c-jun/metabolism , Rats, Sprague-Dawley , Signal Transduction/drug effects , Transcription, Genetic/drug effects , Tumor Suppressor Protein p53/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...