Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Psychol Res ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38914809

ABSTRACT

The presentation of one task increases the reaction time on a subsequent task, if stimulus onset asynchrony (SOA) between tasks is short. This psychological refractory period (PRP) effect is typically leveling off as SOA approaches 1 s, which has been documented both in classical laboratory paradigms and in simulated car driving. Here we report a more persistent effect on the subsequent task that goes well beyond the typical duration of the PRP effect. In a driving simulator, 120 healthy older participants followed a lead car that mostly drove at a constant speed. They had to maintain a regular distance from the lead car and had to brake when the lead car braked. Participants also engaged in several additional tasks during driving (two types of tasks: typing three-digit numbers, stating arguments on public issues). SOA between the braking task and the last preceding additional task was 11.49 s ± 1.99 (mean and standard deviation). In a control condition, the braking task was administered without additional tasks. Main performance outcome was Braking Reaction Time (RT, in s), as the interval between onset of brake lights of the lead car and the moment participants released the gas pedal. Additionally, foot movement time (MT, in s), i.e., the difference between gas pedal release and brake pedal onset, was considered for possible compensation behavior. Inter-vehicle distance to the lead car (in m) was taken into account as a moderator. We found that RT averaged 0.77 s without additional tasks, but averaged 1.45 s with additional tasks. This RT difference was less pronounced at smaller inter-vehicle distances, and was not compensated for by faster MT from the gas pedal to the brake pedal. We conclude that detrimental effects of additional tasks on subsequent braking responses can be more persistent than suggested by the PRP effect, possibly because of maintaining multiple task sets, requiring increased executive control. We further conclude that potential detrimental effects can be ameliorated at small inter-vehicle distances by mobilizing extra cognitive resources when response urgency is higher. As a practical implication of our study, distracting stimuli can have persisting detrimental effects on traffic safety.

2.
Sensors (Basel) ; 24(12)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38931563

ABSTRACT

The investigation of gait and its neuronal correlates under more ecologically valid conditions as well as real-time feedback visualization is becoming increasingly important in neuro-motor rehabilitation research. The Gait Real-time Analysis Interactive Lab (GRAIL) offers advanced opportunities for gait and gait-related research by creating more naturalistic yet controlled environments through immersive virtual reality. Investigating the neuronal aspects of gait requires parallel recording of brain activity, such as through mobile electroencephalography (EEG) and/or mobile functional near-infrared spectroscopy (fNIRS), which must be synchronized with the kinetic and /or kinematic data recorded while walking. This proof-of-concept study outlines the required setup by use of the lab streaming layer (LSL) ecosystem for real-time, simultaneous data collection of two independently operating multi-channel EEG and fNIRS measurement devices and gait kinetics. In this context, a customized approach using a photodiode to synchronize the systems is described. This study demonstrates the achievable temporal accuracy of synchronous data acquisition of neurophysiological and kinematic and kinetic data collection in the GRAIL. By using event-related cerebral hemodynamic activity and visually evoked potentials during a start-to-go task and a checkerboard test, we were able to confirm that our measurement system can replicate known physiological phenomena with latencies in the millisecond range and relate neurophysiological and kinetic data to each other with sufficient accuracy.


Subject(s)
Electroencephalography , Gait Analysis , Gait , Spectroscopy, Near-Infrared , Humans , Biomechanical Phenomena/physiology , Electroencephalography/methods , Spectroscopy, Near-Infrared/methods , Gait/physiology , Male , Gait Analysis/methods , Adult , Female , Virtual Reality , Walking/physiology , Brain/physiology , Proof of Concept Study , Young Adult
3.
Sports Med Open ; 10(1): 20, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38429549

ABSTRACT

BACKGROUND: Childhood obesity is associated with various health outcomes. Restrictive measures to contain the spread of the Coronavirus Disease 2019 (COVID-19) pandemic, like lockdowns and school closures, affected children's daily structure, physical activity, dietary habits, and sleep quality, possibly exacerbating risk factors for childhood obesity and higher body mass index (BMI) in children. Poor socioeconomic conditions may have led to relatively higher risk for elevated BMI levels following pandemic measures. In this study, the impact of measures related to the COVID-19 pandemic on the BMI of third graders was investigated regarding children's socioeconomic background (SEB). METHODS: Data from 41,728 children (8.84 ± 0.56 years, 20,431 female) were collected in the context of a cohort study. Children were tested either before the pandemic (preCOVID: Sept2017-March2020, n = 26,314), or following the first (postLDI: Aug2020-Dec2020, n = 6657) or second lockdown in Germany (postLDII: Aug2021-Jan2022, n = 8757). SEB was based on the official school type classification of the state of Berlin. Outcome was BMI standard deviation scores (SDS). RESULTS: Significant effects of Time and SEB revealed elevated BMIs in postLDI (M = 0.23, p = 0.011) and postLDII (M = 0.22, p = 0.011) compared to preCOVID (M = 0.17) cohorts and higher BMIs for children with lower SEB (b = - 0.13, p < 0.001). A significant Time × SEB interaction indicated that the effect of SEB on children's BMI increased in response to lockdowns, especially in postLDII (b = - 0.05, p = 0.006). Results suggest that the COVID-19-related measures lead to increased BMI in children, and that children of lower SEB were at particular risk for higher BMIs following lockdowns. CONCLUSIONS: These findings highlight the dependency of children's BMI on societal circumstances. Over the course of two lockdowns in Germany, children have experienced BMI increments, particularly in low socioeconomic areas. Authorities are called into action to counteract increasing rates of childhood weight by promoting physical activity of children and establishing related post-pandemic offers.

4.
Neuroimage ; 273: 120070, 2023 06.
Article in English | MEDLINE | ID: mdl-37004827

ABSTRACT

Walking while performing an additional cognitive task (dual-task walking; DT walking) is a common yet highly demanding behavior in daily life. Previous neuroimaging studies have shown that performance declines from single-task (ST) to DT conditions are accompanied by increased prefrontal cortex (PFC) activity. This increment is particularly pronounced in older adults and has been explained either by compensation, dedifferentiation, or inefficient task processing in fronto-parietal circuits. However, there is only limited evidence for the hypothesized fronto-parietal activity changes measured under real-life conditions such as walking. In this study, we therefore assessed brain activity in PFC and parietal lobe (PL), to investigate whether higher PFC activation during DT walking in older adults is related to compensation, dedifferentiation, or neural inefficiency. Fifty-six healthy older adults (69.11 ± 4.19 years, 30 female) completed three tasks (treadmill walking at 1 m/s, Stroop task, Serial 3's task) under ST and DT conditions (Walking + Stroop, Walking + Serial 3's), and a baseline standing task. Behavioral outcomes were step time variability (Walking), Balance Integration Score BIS (Stroop), and number of correct calculations S3corr (Serial 3's). Brain activity was measured using functional near-infrared spectroscopy (fNIRS) over ventrolateral and dorsolateral PFC (vlPFC, dlPFC) and inferior and superior PL (iPL, sPL). Neurophysiological outcome measures were oxygenated (HbO2) and deoxygenated hemoglobin (HbR). Linear mixed models with follow-up estimated marginal means contrasts were applied to investigate region-specific upregulations of brain activation from ST to DT conditions. Furthermore, the relationships of DT-specific activations across all brain regions was analyzed as well as the relationship between changes in brain activation and changes in behavioral performance from ST to DT. Data indicated the expected upregulation from ST to DT and that DT-related upregulation was more pronounced in PFC (particularly in vlPFC) than in PL regions. Activation increases from ST to DT were positively correlated between all brain regions, and higher brain activation changes predicted higher declines in behavioral performance from ST to DT. Results were largely consistent for both DTs (Stroop and Serial 3's). These findings more likely suggest neural inefficiency and dedifferentiation in PFC and PL rather than fronto-parietal compensation during DT walking in older adults. Findings have implications for interpreting and promoting efficacy of long-term interventions to improve DT walking in older persons.


Subject(s)
Prefrontal Cortex , Walking , Humans , Female , Aged , Aged, 80 and over , Walking/physiology , Prefrontal Cortex/diagnostic imaging , Prefrontal Cortex/physiology , Neuroimaging , Stroop Test , Head , Gait/physiology
5.
Sci Rep ; 13(1): 697, 2023 01 13.
Article in English | MEDLINE | ID: mdl-36639402

ABSTRACT

Age-related decline in cognitive-motor multitasking performance has been attributed to declines in executive functions and physical fitness (motor coordinative fitness and cardiovascular fitness). It has been suggested that those cognitive and physical resources strongly depend on lifestyle factors such as long-term regular physical activity and cognitive engagement. Although research suggests that there is covariation between components of executive functions and physical fitness, the interdependence between these components for cognitive-motor multitasking performance is not yet clear. The aim of the study was to examine the contribution and interrelationship between executive functions, motor coordinative fitness, and cardiovascular fitness on street crossing while multitasking. We used the more ecologically valid scenario to obtain results that might be directly transferable to daily life situation. Data from 50 healthy older adults (65-75 years, 17 females, recruited in two different cities in Germany) were analyzed. Participants' executive functions (composite score including six tests), motor coordinative fitness (composite score including five tests), and cardiovascular fitness (spiroergometry), as well as their street crossing performance while multitasking were assessed. Street crossing was tested under single-task (crossing a two-line road), and multitask conditions (crossing a two-line road while typing numbers on a keypad as simulation of mobile phone use). Street crossing performance was assessed by use of cognitive outcomes (typing, crossing failures) and motor outcomes (stay time, crossing speed). Linear mixed-effects models showed beneficial main effects of executive functions for typing (p = 0.004) and crossing failures (p = 0.023), and a beneficial main effect of motor coordinative fitness for stay time (p = 0.043). Commonality analysis revealed that the proportion of variance commonly explained by executive functions, motor coordinative fitness, and cardiovascular fitness was small for all street crossing outcomes. For typing and crossing failures (cognitive outcomes), the results further showed a higher relative contribution of executive functions compared to motor coordinative fitness and cardiovascular fitness. For stay time (motor outcome), the results correspondingly revealed a higher relative contribution of motor coordinative fitness compared to executive functions and cardiovascular fitness. The findings suggest that during cognitive-motor multitasking in everyday life, task performance is determined by the components of executive functions and physical fitness related to the specific task demands. Since multitasking in everyday life includes cognitive and motor tasks, it seems to be important to maintain both executive functions and physical fitness for independent living up to old age.


Subject(s)
Executive Function , Physical Fitness , Female , Humans , Aged , Exercise , Task Performance and Analysis , Cognition
6.
BMC Geriatr ; 22(1): 581, 2022 07 15.
Article in English | MEDLINE | ID: mdl-35840893

ABSTRACT

BACKGROUND: Multitasking is an essential part of our everyday life, but performance declines typically in older age. Many studies have investigated the beneficial effects of cognitive, motor and combined cognitive-motor training on multitasking performance in older adults. Previous work, however, has not regarded interindividual differences in cognitive functioning and motor fitness that may affect training benefits. The current study aims to identify whether different training programs may have differential effects on multitasking performance depending on the initial level of cognitive functioning and motor fitness. METHODS: We conduct a 12-week single-blinded randomized controlled trial. A total of N = 150 healthy older adults are assigned to either a single cognitive, a single motor, or a simultaneous cognitive-motor training. Participants are trained twice per week for 45 min. A comprehensive test battery assesses cognitive functions, motor and cardiovascular fitness, and realistic multitasking during walking and driving in two virtual environments. We evaluate how multitasking performance is related not only to the training program, but also to participants' initial levels of cognitive functioning and motor fitness. DISCUSSION: We expect that multitasking performance in participants with lower initial competence in either one or both domains (cognitive functioning, motor fitness) benefits more from single-task training (cognitive training and/or motor training). In contrast, multitasking performance in participants with higher competence in both domains should benefit more from multitask training (simultaneous cognitive-motor training). The results may help to identify whether tailored training is favorable over standardized one-size-fits all training approaches to improve multitasking in older adults. In addition, our findings will advance the understanding of factors that influence training effects on multitasking. TRIAL REGISTRATION: DRKS (German Clinical Trials Register), DRKS00022407. Registered 26/08/2020 - Retrospectively registered at https://www.drks.de/drks_web/setLocale_EN.do.


Subject(s)
Cognition , Individuality , Aged , Exercise , Exercise Therapy/methods , Humans , Walking
7.
Brain Sci ; 12(5)2022 May 06.
Article in English | MEDLINE | ID: mdl-35624995

ABSTRACT

Research on multitasking driving has suggested age-related deterioration in driving performance. It has been shown that physical and cognitive functioning, which are related to driving performance and decline with aging, are positively associated with physical activity behavior. This study aimed to explore whether driving performance decline becomes severe with advancing age and whether physical activity behavior modifies age-related deterioration in driving performance. A total of one hundred forty-one healthy adults were categorized into three groups based on their age; old-old (74.21 ± 2.33 years), young-old (66.53 ± 1.50 years), and young adults (23.25 ± 2.82 years). Participants completed a realistic multitasking driving task. Physical activity and cardiorespiratory fitness levels were evaluated. Older groups drove more slowly and laterally than young adults, and old-old adults drove slower than young-old ones across the whole driving course. Physical activity level did not interact with the aging effect on driving performance, whereas cardiovascular fitness interacted. Higher-fitness young-old and young adults drove faster than higher-fitness old-old adults. Higher-fitness old adults drove more laterally than higher-fitness young adults. The present study demonstrated a gradual decline in driving performance in old adults, and cardiorespiratory fitness interacted with the aging effect on driving performance. Future research on the interaction of aging and physical activity behavior on driving performance in different age groups is of great value and may help deepen our knowledge.

8.
Accid Anal Prev ; 161: 106363, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34454282

ABSTRACT

It is well established that car driving performance suffers when the driver concurrently engages in a distracting activity, such as talking on a cell phone. The present study investigates whether the effects of driver distraction are short-lived, or rather persist for some time. Age-related differences are evaluated as well. Sixty-three young and 61 older adults were tested in a driving simulator. They were asked to follow a lead car that drove at a constant speed, and to concurrently engage in a pseudorandom sequence of distracting tasks (typing, reasoning, memorizing). When the lead car braked, participants had to brake as well to prevent a collision. The stimulus onset asynchrony between the braking task and the last preceding distraction was 11.49 ± 1.99 s. Each person was tested once in a multitasking condition (as described above), and once in a control condition without distracting tasks. Outcome measures quantified distance keeping and lane keeping while participants braked to the lead car. We found that braking responses differed significantly between conditions; this difference could be interpreted as a combination of performance deficits and compensatory strategies in the multitasking condition compared to the control condition. We also found significant differences between age groups, which could be interpreted similarly. Differences between age groups were less pronounced in the multitasking than in the control condition. All observed effects were associated with participants' executive functioning. Our findings confirm that distractions have an impact on braking responses, and they document for the first time that this impact can persist for about 11.5 s. We attribute this persistence to a task set effect, and discuss the practical relevance of our findings.


Subject(s)
Automobile Driving , Cell Phone , Distracted Driving , Accidents, Traffic , Aged , Attention , Humans
9.
Front Aging Neurosci ; 13: 686499, 2021.
Article in English | MEDLINE | ID: mdl-34267646

ABSTRACT

Driving is an important skill for older adults to maintain an independent lifestyle, and to preserve the quality of life. However, the ability to drive safely in older adults can be compromised by age-related cognitive decline. Performing an additional task during driving (e.g., adjusting the radio) increases cognitive demands and thus might additionally impair driving performance. Cognitive functioning has been shown to be positively related to physical activity/fitness such as cardiovascular and motor coordinative fitness. As such, a higher fitness level might be associated with higher cognitive resources and may therefore benefit driving performance under dual-task conditions. For the first time, the present study investigated whether this association of physical fitness and cognitive functioning causes an indirect relationship between physical fitness and dual-task driving performance through cognitive functions. Data from 120 healthy older adults (age: 69.56 ± 3.62, 53 female) were analyzed. Participants completed tests on cardiovascular fitness (cardiorespiratory capacity), motor coordinative fitness (composite score: static balance, psychomotor speed, bimanual dexterity), and cognitive functions (updating, inhibition, shifting, cognitive processing speed). Further, they performed a virtual car driving scenario where they additionally engaged in cognitively demanding tasks that were modeled after typical real-life activities during driving (typing or reasoning). Structural equation modeling (path analysis) was used to investigate whether cardiovascular and motor coordinative fitness were indirectly associated with lane keeping (i.e., variability in lateral position) and speed control (i.e., average velocity) while dual-task driving via cognitive functions. Both cardiovascular and motor coordinative fitness demonstrated the hypothesized indirect effects on dual-task driving. Motor coordinative fitness showed a significant indirect effect on lane keeping, while cardiovascular fitness demonstrated a trend-level indirect effect on speed control. Moreover, both fitness domains were positively related to different cognitive functions (processing speed and/or updating), and cognitive functions (updating or inhibition), in turn, were related to dual-task driving. These findings indicate that cognitive benefits associated with higher fitness may facilitate driving performance. Given that driving with lower cognitive capacity can result in serious consequences, this study emphasizes the importance for older adults to engage in a physically active lifestyle as it might serve as a preventive measure for driving safety.

10.
Neuroimage ; 225: 117492, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33169696

ABSTRACT

Driving is a complex cognitive-motor task that requires the continuous integration of multisensory information, cognitive processes, and motor actions. With higher age, driving becomes increasingly challenging as a result of naturally declining neurophysiological resources. Performing additional subtasks, such as conversations with passengers or interactions with in-vehicle devices (e.g., adjusting the radio), may further challenge neurocognitive resources that are required to maintain driving performance. Based on declining brain physiological resources and inferior neurocognitive functioning, older adults (OA) may show higher brain activation and larger performance decrements than younger adults (YA) when engaging in additional subtasks during driving. Age differences, however, may further vary for different neurocognitive task demands, such that driving performance of OA might be particularly affected by certain subtasks. In this study, we hence investigated the brain functional correlates of age differences in driving behavior during concurrent subtask performance in YA and OA. Our final sample consisted of thirty younger (21.80 ± 1.73y, 15 female) and thirty older (69.43 ± 3.30y, 12 female) regular drivers that drove along a typical rural road (25 - 30 min) in a driving simulator and performed three different concurrent subtasks that were presented auditorily or visually: typing a 3-digit number (TYPE), comparing traffic news and gas station prices (working memory, WM), and stating arguments (ARG). We measured variability in lateral car position, velocity, and following distance to a frontal lead car as the standard deviation from 0 to 15 s after subtask onset. Brain activity was continuously recorded using functional near-infrared spectroscopy over the dorsolateral prefrontal cortex. Both YA and OA particularly varied in their lateral position during TYPE with a more pronounced effect in OA. For YA, in contrast, ARG led to higher variability in velocity compared to TYPE and WM, whereas OA showed no task-specific differences. Substantiating our behavioral findings, OA revealed the largest brain functional response to TYPE, while YA demonstrated a very distinct activation during ARG and smaller hemodynamic responses to TYPE and WM. Brain activity in the DLPFC was, overall, not significantly, but small to moderately related to certain behavioral performance parameters (mainly lateral position). We conclude that both OA and YA are vulnerable to distractive subtasks while driving. Age differences, however, seem to largely depend on neurocognitive task demands. OA may be at higher risk for accidents when performing visuo-motor subtasks (e.g., interacting with navigational systems) during driving while YA may be more (cognitively) distracted when talking to passengers.


Subject(s)
Automobile Driving , Distracted Driving , Memory, Short-Term , Multitasking Behavior/physiology , Prefrontal Cortex/diagnostic imaging , Psychomotor Performance/physiology , Age Factors , Aged , Computer Simulation , Female , Functional Neuroimaging , Humans , Male , Prefrontal Cortex/physiology , Spectroscopy, Near-Infrared , Virtual Reality , Young Adult
11.
Brain Sci ; 10(11)2020 Nov 03.
Article in English | MEDLINE | ID: mdl-33153013

ABSTRACT

Numerous studies have reported the beneficial effects of acute exercise on executive functions. Less is known, however, about the effects of exercise on working memory as one subcomponent of executive functions and about its effects on older adults. We investigated the effects of acute moderate-intensity exercise on working memory performance, the respective cortical hemodynamic activation patterns, and the development and persistence of such effects in healthy older adults. Forty-four participants (M: 69.18 years ± 3.92; 21 females) performed a letter 2-back task before and at three time points after (post 15 min, post 30 min, and post 45 min) either listening to an audiobook or exercising (15 min; 50% VO2-peak). Functional near-infrared spectroscopy (fNIRS) was used to assess cortical hemodynamic activation and brain-behavior correlations in the fronto-parietal working memory network. Overall, we found no group differences for working memory performance. However, only within the experimental group, 2-back performance was enhanced 15 min and 45 min post-exercise. Furthermore, 15 min post-exercise frontal activation predicted working memory performance, regardless of group. In sum, our results indicate slight beneficial effects of acute moderate-intensity exercise on working memory performance in healthy older adults. Findings are discussed in light of the cognitive aging process and moderators affecting the exercise-cognition relationship.

12.
J Clin Med ; 8(5)2019 May 23.
Article in English | MEDLINE | ID: mdl-31126052

ABSTRACT

Human aging is associated with structural and functional brain deteriorations and a corresponding cognitive decline. Exergaming (i.e., physically active video-gaming) has been supposed to attenuate age-related brain deteriorations and may even improve cognitive functions in healthy older adults. Effects of exergaming, however, vary largely across studies. Moreover, the underlying neurophysiological mechanisms by which exergaming may affect cognitive and brain function are still poorly understood. Therefore, we systematically reviewed the effects of exergame interventions on cognitive outcomes and neurophysiological correlates in healthy older adults (>60 years). After screening 2709 studies (Cochrane Library, PsycINFO, Pubmed, Scopus), we found 15 eligible studies, four of which comprised neurophysiological measures. Most studies reported within group improvements in exergamers and favorable interaction effects compared to passive controls. Fewer studies found superior effects of exergaming over physically active control groups and, if so, solely for executive functions. Regarding individual cognitive domains, results showed no consistence. Positive effects on neurophysiological outcomes were present in all respective studies. In summary, exergaming seems to be equally or slightly more effective than other physical interventions on cognitive functions in healthy older adults. Tailored interventions using well-considered exergames and intervention designs, however, may result in more distinct effects on cognitive functions.

SELECTION OF CITATIONS
SEARCH DETAIL
...