Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Blood ; 106(8): 2730-6, 2005 Oct 15.
Article in English | MEDLINE | ID: mdl-16002430

ABSTRACT

Human fibrinogen 1 is homodimeric with respect to its gamma chains (gammaA-gammaA'), whereas fibrinogen 2 molecules each contain one gammaA (gammaA1-411V) and one gamma' chain, which differ by containing a unique C-terminal sequence from gamma'408 to 427L that binds thrombin and factor XIII. We investigated the structural and functional features of these fibrins and made several observations. First, thrombin-treated fibrinogen 2 produced finer, more branched clot networks than did fibrin 1. These known differences in network structure were attributable to delayed release of fibrinopeptide (FP) A from fibrinogen 2 by thrombin, which in turn was likely caused by allosteric changes at the thrombin catalytic site induced by thrombin exosite 2 binding to the gamma' chains. Second, cross-linking of fibrin gamma chains was virtually the same for both types of fibrin. Third, the acceleratory effect of fibrin on thrombin-mediated XIII activation was more prominent with fibrin 1 than with fibrin 2, and this was also attributable to allosteric changes at the catalytic site induced by thrombin binding to gamma' chains. Fourth, fibrinolysis of fibrin 2 was delayed compared with fibrin 1. Altogether, differences between the structure and function of fibrins 1 and 2 are attributable to the effects of thrombin binding to gamma' chains.


Subject(s)
Fibrin/metabolism , Fibrinogen/metabolism , Protein Precursors/metabolism , Factor XIII/metabolism , Fibrin/biosynthesis , Fibrin/ultrastructure , Fibrinogen/chemistry , Fibrinogen/ultrastructure , Fibrinolysis , Humans , Thrombin/metabolism , Thrombin/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...