Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Steroid Biochem Mol Biol ; 233: 106362, 2023 10.
Article in English | MEDLINE | ID: mdl-37451557

ABSTRACT

Cancer remains a major health concern worldwide. The most frequently diagnosed types of cancer are caused by abnormal production or action of steroid hormones. In the present study, the synthesis and structural characterization of new heterocyclic androstane derivatives with D-homo lactone, 17α-(pyridine-2''-ylmethyl) or 17(E)-(pyridine-2''-ylmethylidene) moiety are presented. All compounds were evaluated for their anti-proliferative activity against HeLa cervical cancer cell line and non-cancerous kidney MDCK cells, where A-homo lactam compound 9A showed the greatest selectivity. Based on in vitro binding assays, N-formyl lactam compound 18 appeared to be the strong and isoform-selective ligand for ERα, while compound 9A displayed binding affinity for the GR-LBD, but also inhibited aldo-keto reductase 1C4 enzyme. Out of four selected compounds, methylpyrazolo derivative 13 showed potential for aromatase binding, while in silico studies provided insight into experimentally confirmed protein-ligand interactions.


Subject(s)
Androstanes , Antineoplastic Agents , Humans , Ligands , Androstanes/pharmacology , Androstanes/chemistry , Steroids/metabolism , Lactams/pharmacology , Structure-Activity Relationship , Cell Proliferation , Molecular Structure , Drug Screening Assays, Antitumor , Cell Line, Tumor
2.
World J Stem Cells ; 13(1): 91-114, 2021 Jan 26.
Article in English | MEDLINE | ID: mdl-33584982

ABSTRACT

BACKGROUND: A major problem in the healing of bone defects is insufficient or absent blood supply within the defect. To overcome this challenging problem, a plethora of approaches within bone tissue engineering have been developed recently. Bearing in mind that the interplay of various diffusible factors released by endothelial cells (ECs) and osteoblasts (OBs) have a pivotal role in bone growth and regeneration and that adjacent ECs and OBs also communicate directly through gap junctions, we set the focus on the simultaneous application of these cell types together with platelet-rich plasma (PRP) as a growth factor reservoir within ectopic bone tissue engineering constructs. AIM: To vascularize and examine osteogenesis in bone tissue engineering constructs enriched with PRP and adipose-derived stem cells (ASCs) induced into ECs and OBs. METHODS: ASCs isolated from adipose tissue, induced in vitro into ECs, OBs or just expanded were used for implant construction as followed: BPEO, endothelial and osteogenic differentiated ASCs with PRP and bone mineral matrix; BPUI, uninduced ASCs with PRP and bone mineral matrix; BC (control), only bone mineral matrix. At 1, 2, 4 and 8 wk after subcutaneous implantation in mice, implants were extracted and endothelial-related and bone-related gene expression were analyzed, while histological analyses were performed after 2 and 8 wk. RESULTS: The percentage of vascularization was significantly higher in BC compared to BPUI and BPEO constructs 2 and 8 wk after implantation. BC had the lowest endothelial-related gene expression, weaker osteocalcin immunoexpression and Spp1 expression compared to BPUI and BPEO. Endothelial-related gene expression and osteocalcin immunoexpression were higher in BPUI compared to BC and BPEO. BPEO had a higher percentage of vascularization compared to BPUI and the highest CD31 immunoexpression among examined constructs. Except Vwf, endothelial-related gene expression in BPEO had a later onset and was upregulated and well-balanced during in vivo incubation that induced late onset of Spp1 expression and pronounced osteocalcin immunoexpression at 2 and 8 wk. Tissue regression was noticed in BPEO constructs after 8 wk. CONCLUSION: Ectopically implanted BPEO constructs had a favorable impact on vascularization and osteogenesis, but tissue regression imposed the need for discovering a more optimal EC/OB ratio prior to considerations for clinical applications.

3.
Int Orthop ; 45(4): 1087-1095, 2021 04.
Article in English | MEDLINE | ID: mdl-33025084

ABSTRACT

PURPOSE: Given the great potential of macrophages in the processes of tissue repair and regeneration, the aim of our study was to examine the contribution that macrophages will have in osteogenic process when combined and implanted with blood clot (BC) and mineral bone substitute (MBS) in mice subcutaneous implantation model. METHODS: Three types of implants were constructed and implanted subcutaneously into BALB/c mice: (1) RMBM implants (made of resident tissue macrophages, BC and MBS), (2) BM implants (made of BC and MBS), and (3) M implants (made of MBS only) where the last two served as control implants. One, two, four and eight weeks after implantation implants were explanted, and histochemical, immunohistochemical, and histomorphometric analyses were performed. RESULTS: Increased vascularization, particularly pronounced two and four weeks after implantation and pronounced tissue infiltration in eight week term in RMBM implants compared with both other types, likewise the presence of osteoblast-like cells, osteoid-like structures, and more prominent osteopontin and osteocalcin immunoexpression in RMBM implants indicated more pronounced osteogenic process within them. CONCLUSION: Our results suggest that macrophages deserve to be considered as a cell component when constructing implants in bone regenerative medicine strategies to improve bone fracture healing process.


Subject(s)
Bone Substitutes , Thrombosis , Animals , Bone Regeneration , Macrophages , Mice , Mice, Inbred BALB C , Osteogenesis
SELECTION OF CITATIONS
SEARCH DETAIL
...