Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 15(3)2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36772018

ABSTRACT

Over the past few decades, additive manufacturing (AM) has become a reliable tool for prototyping and low-volume production. In recent years, the market share of such products has increased rapidly as these manufacturing concepts allow for greater part complexity compared to conventional manufacturing technologies. Furthermore, as recyclability and biocompatibility have become more important in material selection, biopolymers have also become widely used in AM. This article provides an overview of AM with advanced biopolymers in fields from medicine to food packaging. Various AM technologies are presented, focusing on the biopolymers used, selected part fabrication strategies, and influential parameters of the technologies presented. It should be emphasized that inkjet bioprinting, stereolithography, selective laser sintering, fused deposition modeling, extrusion-based bioprinting, and scaffold-free printing are the most commonly used AM technologies for the production of parts from advanced biopolymers. Achievable part complexity will be discussed with emphasis on manufacturable features, layer thickness, production accuracy, materials applied, and part strength in correlation with key AM technologies and their parameters crucial for producing representative examples, anatomical models, specialized medical instruments, medical implants, time-dependent prosthetic features, etc. Future trends of advanced biopolymers focused on establishing target-time-dependent part properties through 4D additive manufacturing are also discussed.

2.
Materials (Basel) ; 15(11)2022 May 30.
Article in English | MEDLINE | ID: mdl-35683189

ABSTRACT

In this study, boride layers on C70W2 steel, obtained by boronizing at temperatures ranging from 870 to 970 °C and durations from 4 to 8 h, were investigated. The characterization of the layers was carried out using a new approach based on the change in the volume fraction of the boride phase. Analysis of the change in volume fraction showed that an increase in temperature and duration resulted in thicker layers, with temperature having a greater influence. Based on the volume fraction of the boride phase, the layer is divided into compact and toothed parts. With increasing temperature, the thicknesses of both parts of the layer increased. The thickness of the toothed part was the highest after 6 h of boronizing and further prolongation of boronizing led to a decrease in the thickness. Regression equations were estimated for the prediction of the volume fraction of the boride phase, the thickness of the compact part, and that of the toothed part of the boride layer as a function of the boronizing parameters. This study has shown that characterization based on the volume fraction of the boride phase offers advantages over the conventional method based on the average thickness of the layer.

3.
Polymers (Basel) ; 14(3)2022 Jan 21.
Article in English | MEDLINE | ID: mdl-35160424

ABSTRACT

Polymer nanocomposites consist of a polymer matrix and reinforcing particles that have at least one dimension under 100 nm. The processing of nanocomposite polymers is the most important stage, determining the final properties of nanocomposites. Nanocomposites are now preferentially prepared by melt-mixing using conventional compounding processes such as twin-screw extrusion. Many processing parameters (polymer matrix type, content and type of nanofiller, barrel temperature, screw speed, number and shape of extruder screws, etc.) affect the properties of nanocomposites. This research work represents an investigation of the influence of processing parameters (amount of nanoclay filler, the screw rotation speed, and extruder barrel temperature) on the flexural properties of polyamide 12/nanoclay-reinforced nanocomposite. From the test results, it is apparent that an increase in nanoclay content from 1 to 8% significantly increases flexural strength. The obtained nanocomposite has a 19% higher flexural strength and a 56% higher flexural modulus than pure PA12. Mathematical models that show the dependence of flexural strength and flexural modulus on the processing parameters used were obtained as a result of this analysis.

SELECTION OF CITATIONS
SEARCH DETAIL
...