Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Nanoscale Adv ; 3(2): 567-574, 2021 Jan 26.
Article in English | MEDLINE | ID: mdl-36131736

ABSTRACT

The Schottky barrier of a metal-semiconductor junction is one of the key quantities affecting the charge transport in a transistor. The Schottky barrier height depends on several factors, such as work function difference, local atomic configuration in the interface, and impurity doping. We show that also the presence of interface states at 2D metal-semiconductor junctions can give rise to a large renormalization of the effective Schottky barrier determined from the temperature dependence of the current. We investigate the charge transport in n- and p-doped monolayer MoTe2 1T'-1H junctions using ab initio quantum transport calculations. The Schottky barriers are extracted both from the projected density of states and the transmission spectrum, and by simulating the IT-characteristic and applying the thermionic emission model. We find interface states originating from the metallic 1T' phase rather than the semiconducting 1H phase in contrast to the phenomenon of Fermi level pinning. Furthermore, we find that these interface states mediate large tunneling currents which dominates the charge transport and can lower the effective barrier to a value of only 55 meV.

2.
J Phys Condens Matter ; 32(1): 015901, 2020 Jan 01.
Article in English | MEDLINE | ID: mdl-31470430

ABSTRACT

QuantumATK is an integrated set of atomic-scale modelling tools developed since 2003 by professional software engineers in collaboration with academic researchers. While different aspects and individual modules of the platform have been previously presented, the purpose of this paper is to give a general overview of the platform. The QuantumATK simulation engines enable electronic-structure calculations using density functional theory or tight-binding model Hamiltonians, and also offers bonded or reactive empirical force fields in many different parametrizations. Density functional theory is implemented using either a plane-wave basis or expansion of electronic states in a linear combination of atomic orbitals. The platform includes a long list of advanced modules, including Green's-function methods for electron transport simulations and surface calculations, first-principles electron-phonon and electron-photon couplings, simulation of atomic-scale heat transport, ion dynamics, spintronics, optical properties of materials, static polarization, and more. Seamless integration of the different simulation engines into a common platform allows for easy combination of different simulation methods into complex workflows. Besides giving a general overview and presenting a number of implementation details not previously published, we also present four different application examples. These are calculations of the phonon-limited mobility of Cu, Ag and Au, electron transport in a gated 2D device, multi-model simulation of lithium ion drift through a battery cathode in an external electric field, and electronic-structure calculations of the composition-dependent band gap of SiGe alloys.

3.
J Chem Phys ; 147(22): 224104, 2017 Dec 14.
Article in English | MEDLINE | ID: mdl-29246062

ABSTRACT

It is natural to characterize materials in transport junctions by their conductance length dependence, ß. Theoretical estimations of ß are made employing two primary theories: complex band structure and density functional theory (DFT) Landauer transport. It has previously been shown that the ß value derived from total Landauer transmission can be related to the ß value from the smallest |ki| complex band; however, it is an open question whether there is a deeper relationship between the two. Here we probe the details of the relationship between transmission and complex band structure, in this case individual eigenchannel transmissions and different complex bands. We present calculations of decay constants for the two most conductive states as determined by complex band structure and standard DFT Landauer transport calculations for one semi-conductor and two molecular junctions. The molecular junctions show that both the length dependence of the total transmission and the individual transmission eigenvalues can be, almost always, found through the complex band structure. The complex band structure of the semi-conducting material, however, does not predict the length dependence of the total transmission but only of the individual channels, at some k-points, due to multiple channels contributing to transmission. We also observe instances of vertical bands, some of which are the smallest |ki| complex bands, that do not contribute to transport. By understanding the deeper relationship between complex bands and individual transmission eigenchannels, we can make a general statement about when the previously accepted wisdom linking transmission and complex band structure will fail, namely, when multiple channels contribute significantly to the transmission.

4.
Nano Lett ; 17(9): 5626-5633, 2017 09 13.
Article in English | MEDLINE | ID: mdl-28795576

ABSTRACT

The control of recently observed spintronic effects in topological-insulator/ferromagnetic-metal (TI/FM) heterostructures is thwarted by the lack of understanding of band structure and spin textures around their interfaces. Here we combine density functional theory with Green's function techniques to obtain the spectral function at any plane passing through atoms of Bi2Se3 and Co or Cu layers comprising the interface. Instead of naively assumed Dirac cone gapped by the proximity exchange field spectral function, we find that the Rashba ferromagnetic model describes the spectral function on the surface of Bi2Se3 in contact with Co near the Fermi level EF0, where circular and snowflake-like constant energy contours coexist around which spin locks to momentum. The remnant of the Dirac cone is hybridized with evanescent wave functions from metallic layers and pushed, due to charge transfer from Co or Cu layers, a few tenths of an electron-volt below EF0 for both Bi2Se3/Co and Bi2Se3/Cu interfaces while hosting distorted helical spin texture wounding around a single circle. These features explain recent observation of sensitivity of spin-to-charge conversion signal at TI/Cu interface to tuning of EF0. Crucially for spin-orbit torque in TI/FM heterostructures, few monolayers of Co adjacent to Bi2Se3 host spectral functions very different from the bulk metal, as well as in-plane spin textures (despite Co magnetization being out-of-plane) due to proximity spin-orbit coupling in Co induced by Bi2Se3. We predict that out-of-plane tunneling anisotropic magnetoresistance in Cu/Bi2Se3/Co vertical heterostructure can serve as a sensitive probe of the type of spin texture residing at EF0.

5.
J Phys Condens Matter ; 29(18): 185901, 2017 May 10.
Article in English | MEDLINE | ID: mdl-28362637

ABSTRACT

The geometry and structure of an interface ultimately determines the behavior of devices at the nanoscale. We present a generic method to determine the possible lattice matches between two arbitrary surfaces and to calculate the strain of the corresponding matched interface. We apply this method to explore two relevant classes of interfaces for which accurate structural measurements of the interface are available: (i) the interface between pentacene crystals and the (1 1 1) surface of gold, and (ii) the interface between the semiconductor indium-arsenide and aluminum. For both systems, we demonstrate that the presented method predicts interface geometries in good agreement with those measured experimentally, which present nontrivial matching characteristics and would be difficult to guess without relying on automated structure-searching methods.

6.
J Chem Phys ; 140(21): 214106, 2014 Jun 07.
Article in English | MEDLINE | ID: mdl-24907989

ABSTRACT

A method is presented for generating a good initial guess of a transition path between given initial and final states of a system without evaluation of the energy. An objective function surface is constructed using an interpolation of pairwise distances at each discretization point along the path and the nudged elastic band method then used to find an optimal path on this image dependent pair potential (IDPP) surface. This provides an initial path for the more computationally intensive calculations of a minimum energy path on an energy surface obtained, for example, by ab initio or density functional theory. The optimal path on the IDPP surface is significantly closer to a minimum energy path than a linear interpolation of the Cartesian coordinates and, therefore, reduces the number of iterations needed to reach convergence and averts divergence in the electronic structure calculations when atoms are brought too close to each other in the initial path. The method is illustrated with three examples: (1) rotation of a methyl group in an ethane molecule, (2) an exchange of atoms in an island on a crystal surface, and (3) an exchange of two Si-atoms in amorphous silicon. In all three cases, the computational effort in finding the minimum energy path with DFT was reduced by a factor ranging from 50% to an order of magnitude by using an IDPP path as the initial path. The time required for parallel computations was reduced even more because of load imbalance when linear interpolation of Cartesian coordinates was used.

7.
J Am Chem Soc ; 126(4): 1229-34, 2004 Feb 04.
Article in English | MEDLINE | ID: mdl-14746495

ABSTRACT

In this paper, we report the self-assembly, electrical characterization, and surface modification of dithiolated phenylene-ethynylene oligomer monolayers on a Au(111) surface. The self-assembly was accomplished by thiol bonding the molecules from solution to a Au(111) surface. We have confirmed the formation of self-assembled monolayers by scanning tunneling microscopy (STM) and optical ellipsometry, and have studied the kinetics of film growth. We suggest that self-assembled phenylene ethynylene oligomers on Au(111) surfaces grow as thiols rather than as thiolates. Using low-temperature STM, we collected local current-voltage spectra showing negative differential resistance at 6 K.

8.
J Am Chem Soc ; 125(13): 3674-5, 2003 Apr 02.
Article in English | MEDLINE | ID: mdl-12656578

ABSTRACT

We present state-of-the-art first principles calculations for the IV characteristics of a donor-insulator-acceptor (DsigmaA) type molecular diode anchored with thiolate bonds to two gold electrodes. We find very poor diode characteristics of the device, and the origin of this is analyzed in terms of the bias-dependent electronic structure. At zero bias, the highest occupied molecular orbital (HOMO) is confined to the D part, and the lowest unoccupied molecular orbital (LUMO) is confined to the A part, while at 3.8 V the two states align, and this gives rise to an increasing current. The latter is a potential mechanism for rectification and may in some cases lead to favorable diode characteristics. We identify the origin of the vanishing rectification for the investigated molecule, and on the basis of this we suggest parameters which are important for successful chemical engineering of DsigmaA rectifiers.

9.
Ann N Y Acad Sci ; 1006: 212-26, 2003 Dec.
Article in English | MEDLINE | ID: mdl-14976020

ABSTRACT

Our recently developed method, TranSIESTA, enables modelling of molecular electronic devices under operation conditions. The method is based on density functional theory, and calculates the self-consistent electronic structure of a nanostructure coupled to three-dimensional electrodes with different electrochemical potentials. It uses a full atomistic ab initio description of both the electrodes and the nanoscale device. The calculations reveal information about the scattering states, transmission coefficients, electron current, and non-equilibrium forces in the systems. In this paper we use the method to investigate the electrical properties of three ring phenyl-ethynylene oligomers (OPE). We present results for the electrical effect of side groups and molecular conformations of the molecules. The calculations indicate that molecular switching and negative differential conductance (NDC) are related to rotations of the middle phenyl ring.


Subject(s)
Computer-Aided Design , Computers, Molecular , Electrochemistry/methods , Electronics/methods , Microelectrodes , Models, Chemical , Models, Molecular , Nanotechnology/methods , Algorithms , Computer Simulation , Equipment Design/methods , Equipment Failure Analysis/methods , Software , Software Design
10.
Phys Rev Lett ; 89(13): 138301, 2002 Sep 23.
Article in English | MEDLINE | ID: mdl-12225068

ABSTRACT

We report first-principles studies of electronic transport and rectification in molecular wires attached to gold electrodes. Our ab initio calculation gives an accurate description of the voltage drop as well as the broadening and alignment of the molecular levels in the metal-molecule-metal complex. We find that the operation range and rectification in such strongly chemisorbed molecules is limited by the width of the transmission resonances and their proximity to the Fermi level.

SELECTION OF CITATIONS
SEARCH DETAIL
...