Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Res Sq ; 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-38045269

ABSTRACT

Administration of the Zeta Inhibitory Peptide (ZIP) interferes with memory maintenance and long-term potentiation (LTP). However, mice lacking its putative target, the protein kinase PKMζ, exhibit normal learning and memory as well as LTP, making ZIP's mechanism unclear. Here, we show that ZIP disrupts LTP by removing surface AMPA receptors through its cationic charge alone. This effect was fully blocked by drugs that block macropinocytosis and is dependent on endophilin A2 (endoA2)-mediated endocytosis. ZIP and other cationic peptides selectively removed newly inserted AMPAR nanoclusters, providing a mechanism by which these peptides erase memories without effects on basal synaptic function. Lastly, cationic peptides can be administered locally and/or systemically and can be combined with local microinjection of macropinocytosis inhibitors to modulate memories on local and brain-wide scales. Our findings have critical implications for an entire field of memory mechanisms and highlight a previously unappreciated mechanism by which memories can be lost.

2.
iScience ; 26(4): 106439, 2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37020962

ABSTRACT

Pancreatic ß-cell mass expands during pregnancy and regresses in the postpartum period in conjunction with dynamic metabolic demands on maternal glucose homeostasis. To understand transcriptional changes driving these adaptations in ß-cells and other islet cell types, we performed single-cell RNA sequencing on islets from virgin, late gestation, and early postpartum mice. We identified transcriptional signatures unique to gestation and the postpartum in ß-cells, including induction of the AP-1 transcription factor subunits and other genes involved in the immediate-early response (IEGs). In addition, we found pregnancy and postpartum-induced changes differed within each endocrine cell type, and in endothelial cells and antigen-presenting cells within islets. Together, our data reveal insights into cell type-specific transcriptional changes responsible for adaptations by islet cells to pregnancy and their resolution postpartum.

3.
Life Sci ; 213: 116-125, 2018 Nov 15.
Article in English | MEDLINE | ID: mdl-30343125

ABSTRACT

AIMS: Hydrogen sulfide (H2S), an important gasotransmitter, is involved in a variety of cellular functions and pathophysiologic processes. Drug resistance due to alterations in drug trafficking and metabolism severely limits the effectiveness of cancer therapy. This study examined the role of H2S in drug resistance in liver cancer cells. MATERIALS AND METHODS: Human primary hepatocellular carcinoma cell line (HepG2) and doxorubicin (Dox)-resistant cells were used in this study. Cell survival was analyzed by MTT, Annexin V-FITC/propidium iodide staining and clonogenic assay. Western blotting was used for analysis of protein expression, and immunoprecipitation was used to determine interactions of LXR/RXR. KEY FINDINGS: The expression of H2S-generating enzyme cystathionine gamma-lyase (CSE) was inhibited by doxorubicin treatment in HepG2 cells, and H2S sensitized Dox-inhibited cell survival and colony formation. In addition, H2S promoted cellular retention of Dox by suppressing the expressions of ABCA1 and ABCG8. H2S significantly blocked Dox-induced heterodimer formation between LXRα and RXRß and attenuated the binding of LXRα/RXRß to the promoters of ABCA1 and ABCG8 genes. RXRß but not LXRα was S-sulfhydrated by H2S, and blockage of RXRß S-sulfhydration abolished the inhibitory role of H2S on LXRα/RXRß heterodimer formation. CSE expression was reduced in Dox-resistant cells in comparison with their parental cells, while H2S could reverse drug resistance in Dox-resistant cells. SIGNIFICANCE: Our study provides a novel solution for reversing drug resistance in cancer cells by targeting H2S signalling.


Subject(s)
Hydrogen Sulfide/metabolism , Hydrogen Sulfide/pharmacology , ATP Binding Cassette Transporter 1/drug effects , ATP Binding Cassette Transporter, Subfamily G, Member 8/drug effects , Carcinoma, Hepatocellular/drug therapy , Cell Death/drug effects , Cell Movement/drug effects , Cell Survival/drug effects , Cystathionine gamma-Lyase/drug effects , Doxorubicin/metabolism , Drug Resistance, Neoplasm/physiology , Hep G2 Cells , Humans , Liver Neoplasms/drug therapy , Retinoid X Receptors/drug effects , Signal Transduction/drug effects
4.
Molecules ; 22(8)2017 Aug 11.
Article in English | MEDLINE | ID: mdl-28800080

ABSTRACT

Protein S-sulfhydration is a newly discovered post-translational modification of specific cysteine residue(s) in target proteins, which is involved in a broad range of cellular functions and metabolic pathways. By changing local conformation and the final activity of target proteins, S-sulfhydration is believed to mediate most cellular responses initiated by H2S, a novel gasotransmitter. In comparison to protein S-sulfhydration, nitric oxide-mediated protein S-nitrosylation has been extensively investigated, including its formation, regulation, transfer and metabolism. Although the investigation on the regulatory mechanisms associated with protein S-sulfhydration is still in its infancy, accumulated evidence suggested that protein S-sulfhydration may share similar chemical features with protein S-nitrosylation. Glutathione persulfide acts as a major donor for protein S-sulfhydration. Here, we review the present knowledge on protein S-sulfhydration, and also predict its formation and regulation mechanisms based on the knowledge from protein S-nitrosylation.


Subject(s)
Hydrogen Sulfide/metabolism , Proteins/metabolism , Animals , Cysteine/metabolism , Disulfides/metabolism , Glutathione/analogs & derivatives , Glutathione/metabolism , Humans , Nitric Oxide/metabolism , Protein Conformation , Protein Processing, Post-Translational
SELECTION OF CITATIONS
SEARCH DETAIL
...