Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Nutr ; 153(10): 2868-2877, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37604383

ABSTRACT

BACKGROUND: Organic acid synthesis by the hindgut microbiota is commonly believed to be mainly of fermentable material of dietary origin. OBJECTIVE: This study aimed to determine the hindgut organic acid synthesis from fermentable material of dietary (mainly fiber) or nondietary origin for different types and amounts of dietary fiber in growing pigs used as a model for adult humans. METHOD: Seven fiber-containing diets were formulated: 4 fiber types (cellulose, gum acacia, oligofructose, and pectin) at 6% of the diet and 3 (gum acacia, oligofructose, and pectin) at 3% as the sole fiber source. Ileal cannulated female pigs (n = 14; Landrace/Large white) were fed the fiber-containing diets (n = 6 pigs/diet) for 11 days (fiber phase) followed by 3 days on a fiber-free diet (fiber-free phase), using a replicated Youden square. Ileal digesta for each phase were collected and fermented in vitro with a pooled fecal microbial inoculum prepared from feces collected during the fiber phase to determine the organic acids synthesized from fermentable material of dietary (fiber phase) and nondietary (fiber-free phase) origins. RESULTS: The total amount of each individual organic acid synthesized during in vitro hindgut fermentation differed (P ≤ 0.05) across the types and amounts of dietary fiber intake. For example, the amount of acetate was 3.6-fold higher (P ≤ 0.05) for pigs fed the 6% pectin-containing diet than those fed the 6% oligofructose-containing diet. The nondietary substrate contributed between 36% (hexanoate) and 70% (succinate) to the total hindgut organic acid synthesis. The adaptation to the different fiber-containing diets led to different amounts of some organic acids of nondietary origin. CONCLUSIONS: The total amount of organic acids synthesized in the hindgut by the resident microbes is influenced by the type and amount of dietary fiber consumed. This study quantifies the interaction between both dietary and nondietary fermentable materials in hindgut fermentation.

2.
Food Funct ; 13(18): 9355-9371, 2022 Sep 22.
Article in English | MEDLINE | ID: mdl-35972507

ABSTRACT

It is important to understand variability in consumer chewing behavior for designing food products that deliver desired functionalities for target consumer segments. In this study, we selected 29 participants, representing the large range of chewing variation we had observed in 142 healthy young adults, and investigated the influence of chewing behavior on gastrointestinal digestion and colonic fermentation, using in vitro models and brown rice as a model food. Chewing behavior measured by video observations and chewing outcome differed widely between participants, resulting in large differences in the digestibility of carbohydrates. Inter-individual differences in chewing behavior and chewing outcome also significantly affected in vitro patterns of microbial composition and the production of organic acid metabolites, resulting from colonic fermentation, which is increasingly recognized to be important for human health. These digestion/fermentation outcomes were largely related with the chewing time per mouthful, proportion of bolus particles bigger than 2 mm and amount of saliva added to the bolus during chewing. No significant relationships were found with other chewing trajectory and oral physiological measures. These results suggest that modification of chewing may be an effective strategy to control blood glucose levels and to shape gut microbiota and their metabolites, without altering diets, and that further in vivo studies are warranted to confirm these in vitro findings.


Subject(s)
Digestion , Mastication , Blood Glucose , Fermentation , Food , Humans , Mastication/physiology , Young Adult
3.
Animals (Basel) ; 12(4)2022 Feb 17.
Article in English | MEDLINE | ID: mdl-35203206

ABSTRACT

The gastrointestinal microbiome has a range of roles in the host, including the production of beneficial fermentation end products such as butyrate, which are typically associated with fermentation of plant fibres. However, domestic cats are obligate carnivores and do not require carbohydrates. It has been hypothesised that in the wild, collagenous parts of prey-the so-called animal-derived fermentable substrates (ADFS) such as tendons and cartilage-may be fermented by the cat's gastrointestinal microbiome. However, little research has been conducted on ADFS in the domestic cat. Faecal inoculum was obtained from domestic cats either consuming a high carbohydrate (protein:fat:carbohydrate ratio of 35:20:28 (% dry matter basis)) or high protein (protein:fat:carbohydrate ratio of 75:19:1 (% dry matter basis)) diet. ADFS (hydrolysed collagen, cat hair, and cartilage) were used in a series of static in vitro digestions and fermentations. Concentrations of organic acids and ammonia were measured after 24 h of fermentation, and the culture community of microbes was characterised. The type of inoculum used affected the fermentation profile produced by the ADFS. Butyrate concentrations were highest when hydrolysed collagen was fermented with high protein inoculum (p < 0.05). In contrast, butyrate was not detectable when hydrolysed collagen was fermented in high carbohydrate inoculum (p < 0.05). The microbiome of the domestic cat may be able to ferment ADFS to provide beneficial concentrations of butyrate.

4.
Microorganisms ; 9(10)2021 Oct 03.
Article in English | MEDLINE | ID: mdl-34683410

ABSTRACT

We examined the prebiotic potential of 32 food ingredients on the developing infant microbiome using an in vitro gastroileal digestion and colonic fermentation model. There were significant changes in the concentrations of short-chain fatty-acid metabolites, confirming the potential of the tested ingredients to stimulate bacterial metabolism. The 16S rRNA gene sequencing for a subset of the ingredients revealed significant increases in the relative abundances of the lactate- and acetate-producing Bifidobacteriaceae, Enterococcaceae, and Lactobacillaceae, and lactate- and acetate-utilizing Prevotellaceae, Lachnospiraceae, and Veillonellaceae. Selective changes in specific bacterial groups were observed. Infant whole-milk powder and an oat flour enhanced Bifidobacteriaceae and lactic acid bacteria. A New Zealand-origin spinach powder enhanced Prevotellaceae and Lachnospiraceae, while fruit and vegetable powders increased a mixed consortium of beneficial gut microbiota. All food ingredients demonstrated a consistent decrease in Clostridium perfringens, with this organism being increased in the carbohydrate-free water control. While further studies are required, this study demonstrates that the selected food ingredients can modulate the infant gut microbiome composition and metabolism in vitro. This approach provides an opportunity to design nutrient-rich complementary foods that fulfil infants' growth needs and support the maturation of the infant gut microbiome.

5.
Sci Rep ; 11(1): 9292, 2021 04 29.
Article in English | MEDLINE | ID: mdl-33927231

ABSTRACT

Eight plant-based foods: oat flour and pureed apple, blackcurrant, carrot, gold- and green-fleshed kiwifruit, pumpkin, sweetcorn, were pre-digested and fermented with pooled inocula of weaning infants' faecal bacteria in an in vitro hindgut model. Inulin and water were included as controls. The pre-digested foods were analysed for digestion-resistant fibre-derived sugar composition and standardised to the same total fibre concentration prior to fermentation. The food-microbiome interactions were then characterised by measuring microbial acid and gas metabolites, microbial glycosidase activity and determining microbiome structure. At the physiologically relevant time of 10 h of fermentation, the xyloglucan-rich apple and blackcurrant favoured a propiogenic metabolic and microbiome profile with no measurable gas production. Glucose-rich, xyloglucan-poor pumpkin caused the greatest increases in lactate and acetate (indicative of high fermentability) commensurate with increased bifidobacteria. Glucose-rich, xyloglucan-poor oats and sweetcorn, and arabinogalactan-rich carrot also increased lactate and acetate, and were more stimulatory of clostridial families, which are indicative of increased microbial diversity and gut and immune health. Inulin favoured a probiotic-driven consortium, while water supported a proteolytic microbiome. This study shows that the fibre-derived sugar composition of complementary foods may shape infant gut microbiome structure and metabolic activity, at least in vitro.


Subject(s)
Bacteria/metabolism , Dietary Fiber/analysis , Fermentation , Gastrointestinal Microbiome , Sugars/analysis , Avena/chemistry , Bacteria/classification , Bacteria/enzymology , Carboxylic Acids/metabolism , Dietary Fiber/metabolism , Feces/microbiology , Fruit/chemistry , Glycoside Hydrolases/metabolism , Humans , Infant , Sugars/metabolism , Vegetables/chemistry , Weaning
6.
Sci Rep ; 10(1): 13055, 2020 08 03.
Article in English | MEDLINE | ID: mdl-32747727

ABSTRACT

Kiwifruit (KF) contains bioactive compounds with potential anti-inflammatory properties. In this study, we investigated the protective effects of KF on gastric and duodenal damage induced by soluble aspirin in healthy rats. Sixty-four male Sprague Dawley rats were allocated to eight experimental treatments (n = 8) and the experimental diets were fed for 14 days ad libitum. The experimental diets were 20% fresh pureed KF (green-fleshed and gold-fleshed) or 10% glucose solution (control diet). A positive anti-inflammatory control treatment (ranitidine) was included. At the end of the 14-day feeding period, the rats were fasted overnight, and the following morning soluble aspirin (400 mg/kg aspirin) or water (control) was administered by oral gavage. Four hours after aspirin administration, the rats were euthanized and samples taken for analysis. We observed no significant ulcer formation or increase in infiltration of the gastric mucosal inflammatory cells in the rats with the aspirin treatment. Despite this, there were significant changes in gene expression, such as in the duodenum of aspirin-treated rats fed green KF where there was increased expression of inflammation-related genes NOS2 and TNF-alpha. We also observed that gold and green KF diets had a number of contrasting effects on genes related to inflammation and gastro-protective effects.


Subject(s)
Actinidia/chemistry , Aspirin/adverse effects , Duodenum/pathology , Fruit/chemistry , Gastric Mucosa/pathology , Gene Expression Regulation , Inflammation/genetics , Stomach/pathology , Animals , CLOCK Proteins/genetics , CLOCK Proteins/metabolism , Duodenum/drug effects , Gastric Mucosa/drug effects , Gastric Mucosa/metabolism , Gene Expression Regulation/drug effects , Inflammation/pathology , Male , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Principal Component Analysis , Rats, Sprague-Dawley , Stomach/drug effects , Stomach Ulcer/drug therapy , Stomach Ulcer/genetics , Stomach Ulcer/pathology , Tight Junction Proteins/genetics , Tight Junction Proteins/metabolism , Tryptophan/metabolism
7.
Int J Syst Evol Microbiol ; 67(12): 4992-4998, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29039307

ABSTRACT

A novel anaerobic pectinolytic bacterium (strain 14T) was isolated from human faeces. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain 14T belonged to the family Ruminococcaceae, but was located separately from known clostridial clusters within the taxon. The closest cultured relative of strain 14T was Acetivibrio cellulolyticus (89.7 % sequence similarity). Strain 14T shared ~99 % sequence similarity with cloned 16S rRNA gene sequences from uncultured bacteria derived from the human gut. Cells were Gram-stain-positive, non-motile cocci approximately 0.6 µm in diameter. Strain 14T fermented pectins from citrus peel, apple, and kiwifruit as well as carbohydrates that are constituents of pectins and hemicellulose, such as galacturonic acid, xylose, and arabinose. TEM images of strain 14T, cultured in association with plant tissues, suggested extracellular fibrolytic activity associated with the bacterial cells, forming zones of degradation in the pectin-rich regions of middle lamella. Phylogenetic and phenotypic analysis supported the differentiation of strain 14T as a novel genus in the family Ruminococcaceae. The name Monoglobus pectinilyticus gen. nov., sp. nov. is proposed; the type strain is 14T (JCM 31914T=DSM 104782T).


Subject(s)
Clostridiales/classification , Feces/microbiology , Pectins/metabolism , Phylogeny , Adult , Bacterial Typing Techniques , Base Composition , Clostridiales/genetics , Clostridiales/isolation & purification , DNA, Bacterial/genetics , Female , Humans , New Zealand , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
8.
Food Funct ; 7(4): 1825-32, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26778667

ABSTRACT

The fate of stable-isotope (13)C labelled and non-labelled inulin catabolism by the gut microbiota was assessed in a healthy rat model. Sprague-Dawley male rats were randomly assigned to diets containing either cellulose or inulin, and were fed these diets for 3 days. On day (d) 4, rats allocated to the inulin diet received (13)C-labelled inulin. The rats were then fed the respective non-labelled diets (cellulose or inulin) until sampling (d4, d5, d6, d7, d10 and d11). Post feeding of (13)C-labelled substrate, breath analysis showed that (13)C-inulin cleared from the host within a period of 36 hours. Faecal (13)C demonstrated the clearance of inulin from gut with a (13)C excess reaching maximum at 24 hours (d5) and then declining gradually. There were greater variations in caecal organic acid concentrations from d4 to d6, with higher concentrations of acetic, butyric and propionic acids observed in the rats fed inulin compared to those fed cellulose. Inulin influenced caecal microbial glycosidase activity, increased colon crypt depth, and decreased the faecal output and polysaccharide content compared to the cellulose diet. In summary, the presence of inulin in the diet positively influenced large bowel microbial fermentation.


Subject(s)
Bacteria/metabolism , Cecum/metabolism , Intestine, Large/metabolism , Inulin/metabolism , Animals , Carbon Isotopes/chemistry , Carbon Isotopes/metabolism , Cecum/microbiology , Dietary Carbohydrates/analysis , Dietary Carbohydrates/metabolism , Feces/chemistry , Fermentation , Gastrointestinal Microbiome , Intestine, Large/microbiology , Inulin/chemistry , Isotope Labeling , Male , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...