Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Materials (Basel) ; 15(20)2022 Oct 14.
Article in English | MEDLINE | ID: mdl-36295233

ABSTRACT

Biochar has been used in various applications, e.g., as a soil conditioner and in remediation of contaminated water, wastewater, and gaseous emissions. In the latter application, biochar was shown to be a suitable alternative to activated carbon, providing high treatment efficiency. Since biochar is a by-product of waste pyrolysis, its use allows for compliance with circular economics. Thus, this research aims to obtain a detailed characterization of three carbonaceous materials: an activated carbon (CARBOSORB NC 1240®) and two biochars (RE-CHAR® and AMBIOTON®). In particular, the objective of this work is to compare the properties of three carbonaceous materials to evaluate whether the application of the two biochars is the same as that of activated carbon. The characterization included, among others, particle size distribution, elemental analysis, pH, scanning electron microscope, pore volume, specific surface area, and ionic exchange capacity. The results showed that CARBOSORB NC 1240® presented a higher specific surface (1126.64 m2/g) than AMBIOTON® (256.23 m2/g) and RE-CHAR® (280.25 m2/g). Both biochar and activated carbon belong to the category of mesoporous media, showing a pore size between 2 and 50 nm (20-500 Å). Moreover, the chemical composition analysis shows similar C, H, and N composition in the three carbonaceous materials while a higher O composition in RE-CHAR® (9.9%) than in CARBOSORB NC 1240 ® (2.67%) and AMBIOTON® (1.10%). Differences in physical and chemical properties are determined by the feedstock and pyrolysis or gasification temperature. The results obtained allowed to compare the selected materials among each other and with other carbonaceous adsorbents.

2.
Nanomaterials (Basel) ; 11(6)2021 Jun 10.
Article in English | MEDLINE | ID: mdl-34200655

ABSTRACT

According to ISO/TS 80004, a nanomaterial is defined as the "material with any external dimension in the nanoscale or having internal structure or surface structure in the nanoscale", with nanoscale defined as the "length range approximately from 1 nm to 100 nm" [...].

3.
Nanomaterials (Basel) ; 10(7)2020 Jul 05.
Article in English | MEDLINE | ID: mdl-32635642

ABSTRACT

Zinc Oxide is widely used in many industrial sectors, ranging from photocatalysis, rubber, ceramic, medicine, and pigment, to food and cream additive. The global market is estimated to be USD 3600M yearly, with a global production of 10 Mt. In novel applications, size and shape may sensibly increase the efficiency and a new nano-ZnO market is taking the lead (USD 2000M yearly with a capacity of 1 Mt and an expected Compound Annual Growth Rate of 20%/year). The aim of this work was to investigate the possibility of producing zinc oxide nanoparticles by means of a spinning disk reactor (SDR). A lab-scale spinning disk reactor, previously used to produce other nanomaterials such as hydroxyapatite or titania, has been investigated with the aim of producing needle-shaped zinc oxide nanoparticles. At nanoscale and with this shape, the zinc oxide particles exhibit their greatest photoactivity and active area, both increasing the efficiency of photocatalysis and ultraviolet (UV) absorbance. Working at different operating conditions, such as at different disk rotational velocity, inlet distance from the disk center, initial concentration of Zn precursor and base solution, and inlet reagent solution flowrate, in certain conditions, a unimodal size distribution and an average dimension of approximately 56 nm was obtained. The spinning disk reactor permits a continuous production of nanoparticles with a capacity of 57 kg/d, adopting an initial Zn-precursor concentration of 0.5 M and a total inlet flowrate of 1 L/min. Product size appears to be controllable, and a lower average dimension (47 nm), adopting an initial Zn-precursor concentration of 0.02 M and a total inlet flow-rate of 0.1 L/min, can be obtained, scarifying productivity (0.23 kg/d). Ultimately, the spinning disk reactor qualifies as a process-intensified equipment for targeted zinc oxide nanoparticle production in shape in size.

4.
Membranes (Basel) ; 9(1)2018 Dec 26.
Article in English | MEDLINE | ID: mdl-30587807

ABSTRACT

Dynamic membrane system behaviour must be adequately addressed to avoid process unfeasibility. The lack of proper analysis will mean relying on erroneous permeate flux values in the system design, which will lead to quick and/or steady high fouling rates. In this paper, the authors present additional data supporting the boundary flux theory as a helpful tool for membrane engineers to carefully avoid process failures. By fitting the dynamic permeate flux data to the boundary flux model, it was possible to calculate the ß fouling index for the three selected membranes (one nanofiltration (NF) and two reverse osmosis (RO) ones). The dynamic flux given by the low-pressure RO membrane did not follow sub-boundary operating conditions, since a sharp flux loss was measured throughout the whole operating cycle, pinpointing that supra-boundary flux conditions were governing the system. This was supported by the calculated value of the ß fouling parameter, which resulted to be in the order of ten times higher for this membrane. However, the values of ß→0 for the SC-RO and DK-NF ones, supported by the very low value of the sub-boundary fouling parameter α (0.002 and 0.007 L·h-1·m-2·bar-2, respectively), ensure nearly boundary operating conditions for these membranes.

5.
Curr Pharm Des ; 24(21): 2329-2338, 2018.
Article in English | MEDLINE | ID: mdl-29792139

ABSTRACT

BACKGROUND: Nowadays, nanoparticles are of great interest for the industry due to their numerous possible applications in several fields. Research on this topic seeks to develop many procedures to produce nanoparticles, mostly at lab scale, batch-wise and with low yield. These procedures generally do not suit industrial needs of continuous, high capacity production. Moreover, the product characteristics require targeting narrow particle size distributions and high quality, which is difficult to achieve by traditional equipment. METHODS: Process intensification techniques aim to minimize plant size of continuous, high yield equipment capable to produce specific sized, high quality nanoparticles, combined with an increase in energy efficiency, safety and cost reduction. DISCUSSION: This paper reviews some adopted Process Intensification (PI) techniques for nanoparticles synthesis processes employed in the food and pharmaceutical sector. CONCLUSION: By reducing the technology transfer gap, nanotechnologies may become convenient and feasible, allowing both industries to achieve the production of higher quality products with particular characteristics without sensibly increasing additional costs. This will represent in the next future a strategic key feature of industries in the global market.


Subject(s)
Food , Nanoparticles/chemistry , Nanotechnology , Pharmaceutical Preparations/analysis , Particle Size
6.
Membranes (Basel) ; 7(3)2017 Jul 14.
Article in English | MEDLINE | ID: mdl-28708120

ABSTRACT

In the last decades, membrane processes have gained a significant share of the market for wastewater purification. Although the product (i.e., purified water) is not of high added value, these processes are feasible both technically and from an economic point of view, provided the flux is relatively high and that membrane fouling is strongly inhibited. By controlling membrane fouling, the membrane may work for years without service, thus dramatically reducing operating costs and the need for membrane substitution. There is tension between operating at high permeate fluxes, which enhances fouling but reduces capital costs, and operating at lower fluxes which increases capital costs. Operating batch membrane processes leads to increased difficulties, since the feed fed to the membrane changes as a function of the recovery value. This paper is concerned with the operation of such a process. Membrane process designers should therefore avoid membrane fouling by operating membranes away from the permeate flux point where severe fouling is triggered. The design and operation of membrane purification plants is a difficult task, and the precision to properly describe the evolution of the fouling phenomenon as a function of the operating conditions is a key to success. Many reported works have reported on the control of fouling by operating below the boundary flux. On the other hand, only a few works have successfully sought to exploit super-boundary operating conditions; most super-boundary operations are reported to have led to process failures. In this work, both sub- and super-boundary operating conditions for a batch nanofiltration membrane process used for olive mill wastewater treatment were investigated. A model to identify a priori the point of transition from a sub-boundary to a super-boundary operation during a batch operation was developed, and this will provide membrane designers with a helpful tool to carefully avoid process failures.

7.
Article in English | MEDLINE | ID: mdl-26356679

ABSTRACT

The aim of the present study was to investigate the antioxidant activity and protective potential of T. tetraptera extracts against ion toxicity. The antioxidant activity of the extracts was investigated spectrophotometrically against several radicals (1,1-diphenyl-2-picrylhydrazyl (DPPH(•)), 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS(•)), hydroxyl radical (HO(•)), and nitric oxide (NO(•))), followed by the ferric reducing power, total phenols, flavonoid, and flavonol contents. The effects of the extracts on catalase (CAT), superoxide dismutase (SOD), and peroxidase activities were also determined using the standard methods as well as the polyphenol profile using HPLC. The results showed that the hydroethanolic extract of T. tetraptera (CFH) has the lowest IC50 value with the DPPH, ABTS, OH, and NO radicals. The same extract also exhibited the significantly higher level of total phenols (37.24 ± 2.00 CAE/g dried extract); flavonoids (11.36 ± 1.88 QE/g dried extract); and flavonols contents (3.95 ± 0.39 QE/g dried extract). The HPLC profile of T. tetraptera revealed that eugenol (958.81 ± 00 mg/g DW), quercetin (353.78 ± 00 mg/g DW), and rutin (210.54 ± 00 mg/g DW) were higher in the fruit than the bark extracts. In conclusion, extracts from T. tetraptera may act as a protector against oxidative mediated ion toxicity.

8.
Membranes (Basel) ; 4(3): 414-23, 2014 Aug 04.
Article in English | MEDLINE | ID: mdl-25093867

ABSTRACT

Membrane fouling is one of the main issues in membrane processes, leading to a progressive decrease of permeability. High fouling rates strongly reduce the productivity of the membrane plant, and negatively affect the surviving rate of the membrane modules, especially when real wastewater is treated. On the other hand, since selectivity must meet certain target requirements, fouling may lead to unexpected selectivity improvements due to the formation of an additional superficial layer formed of foulants and that act like a selective secondary membrane layer. In this case, a certain amount of fouling may be profitable to the point where selectivity targets were reached and productivity is not significantly affected. In this work, the secondary clarifier of a step sludge recirculation bioreactor treating municipal wastewater was replaced by a membrane unit, aiming at recovering return sludge and producing purified water. Fouling issues of such a system were checked by boundary flux measurements. A simple model for the description of the observed productivity and selectivity values as a function of membrane fouling is proposed.

9.
ScientificWorldJournal ; 2014: 656101, 2014.
Article in English | MEDLINE | ID: mdl-24592177

ABSTRACT

In the last decades much effort was put in understanding fouling phenomena on membranes. One successful approach to describe fouling issues on membranes is the critical flux theory. The possibility to measure a maximum value of the permeate flux for a given system without incurring in fouling issues was a breakthrough in membrane process design. However, in many cases critical fluxes were found to be very low, lower than the economic feasibility of the process. The knowledge of the critical flux value must be therefore considered as a good starting point for process design. In the last years, a new concept was introduced, the threshold flux, which defines the maximum permeate flow rate characterized by a low constant fouling rate regime. This concept, more than the critical flux, is a new practical tool for membrane process designers. In this paper a brief review on critical and threshold flux will be reported and analyzed. And since the concepts share many common aspects, merged into a new concept, called the boundary flux, the validation will occur by the analysis of previously collected data by the authors, during the treatment of olive vegetation wastewater by ultrafiltration and nanofiltration membranes.


Subject(s)
Filtration , Models, Theoretical , Hydrodynamics , Temperature
10.
Antioxidants (Basel) ; 3(4): 866-89, 2014 Dec 16.
Article in English | MEDLINE | ID: mdl-26785245

ABSTRACT

Under oxidative stress conditions, endogenous antioxidant defenses are unable to completely inactivate the free radicals generated by an excessive production of reactive oxygen species (ROS). This state causes serious cell damage leading to a variety of human diseases. Natural antioxidants can protect cells against oxidative stress. Hypaodaphnis zenkeri (H. zenkiri) is a plant consumed as a spice in the Cameroonian diet, and its bark has been used in traditional medicine for the treatment of several diseases. The present study aims at investigating the antioxidant activity, which includes free radical scavenging and protective properties of an extract from H. Zenkiri against oxidative damage on a liver homogenate. The free radical assays determined the scavenging activities of 2,2-diphenyl-1-picrylhydrazyl (DPPH), hydroxyl (OH), nitrite oxide (NO) and 2,2-azinobis(3-ethylbenzthiazoline)-6-sulfonic acid (ABTS) radicals and the enzymes, whose protection was to be considered in the liver homogenate, including superoxide dismutase, catalase, and peroxidase. The antioxidative activities were studied using the ferric reducing antioxidant power (FRAP), reductive activity, and phosphomolybdenum antioxidant power (PAP) methods. In addition, the phenolic contents of the extracts were examined. The results showed that these extracts demonstrated significant scavenging properties and antioxidant activities, with the hydro-ethanolic extract of the bark of H. zenkeri (EEH) being the most potent. This extract had the highest total polyphenol (21.77 ± 0.05 mg caffeic acid (CAE)/g dried extract (DE)) and flavonoids (3.34 ± 0.13 mg quercetin (QE)/g dried extract) content. The same extract had significantly greater protective effects on enzyme activities compared to other extracts. The high performance liquied chromatography (HPLC) profile showed higher levels of caffeic acid, OH-tyrosol acid, and rutin in the leaves compared to the bark of H. zenkeri. In conclusion, the ethanolic and hydro-ethanolic extracts of the bark and leaves from H. zenkeri showed an antioxidant and protective potential against oxidative damage.

11.
Membranes (Basel) ; 3(3): 126-35, 2013 Jul 11.
Article in English | MEDLINE | ID: mdl-24956941

ABSTRACT

The aim of this work is to design and integrate an optimized batch membrane process in a conventional purification process used for the treatment of tannery wastewater. The integration was performed by using two spiral wound membrane modules in series, that is, nanofiltration and reverse osmosis, as substitutes to the biological reactor. The membrane process was designed in terms of sensible fouling issues reduction, which may be observed on the nanofiltration membrane if no optimization is performed. The entity of the fouling phenomena was estimated by pressure cycling measurements, determining both the critical and the threshold flux on the nanofiltration membrane. The obtained results were used to estimate the need of the overdesign of the membrane plant, as well as to define optimized operating conditions in order to handle fouling issues correctly for a long period of time. Finally, the developed membrane process was compared, from a technical and economic point of view, with the conventional biological process, widely offered as an external service near tannery production sites, and, here, proposed to be substituted by membrane technologies.

SELECTION OF CITATIONS
SEARCH DETAIL
...