Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Cell ; 39(9): 1262-1278.e7, 2021 09 13.
Article in English | MEDLINE | ID: mdl-34329586

ABSTRACT

Fusion-transcription factors (fusion-TFs) represent a class of driver oncoproteins that are difficult to therapeutically target. Recently, protein degradation has emerged as a strategy to target these challenging oncoproteins. The mechanisms that regulate fusion-TF stability, however, are generally unknown. Using CRISPR-Cas9 screening, we discovered tripartite motif-containing 8 (TRIM8) as an E3 ubiquitin ligase that ubiquitinates and degrades EWS/FLI, a driver fusion-TF in Ewing sarcoma. Moreover, we identified TRIM8 as a selective dependency in Ewing sarcoma compared with >700 other cancer cell lines. Mechanistically, TRIM8 knockout led to an increase in EWS/FLI protein levels that was not tolerated. EWS/FLI acts as a neomorphic substrate for TRIM8, defining the selective nature of the dependency. Our results demonstrate that fusion-TF protein stability is tightly regulated and highlight fusion oncoprotein-specific regulators as selective therapeutic targets. This study provides a tractable strategy to therapeutically exploit oncogene overdose in Ewing sarcoma and potentially other fusion-TF-driven cancers.


Subject(s)
Bone Neoplasms/mortality , Carrier Proteins/metabolism , Nerve Tissue Proteins/metabolism , Oncogene Proteins, Fusion/chemistry , Proto-Oncogene Protein c-fli-1/chemistry , Proto-Oncogene Protein c-fli-1/metabolism , RNA-Binding Protein EWS/chemistry , RNA-Binding Protein EWS/metabolism , Sarcoma, Ewing/mortality , Bone Neoplasms/metabolism , Carrier Proteins/genetics , Cell Line, Tumor , Cell Proliferation , Cell Survival , Gene Knockout Techniques , HEK293 Cells , Humans , Microfilament Proteins/metabolism , Nerve Tissue Proteins/genetics , Oncogene Proteins, Fusion/metabolism , Protein Stability , Proteolysis , Sarcoma, Ewing/metabolism , Trans-Activators/metabolism
2.
Sci Rep ; 10(1): 5324, 2020 03 24.
Article in English | MEDLINE | ID: mdl-32210275

ABSTRACT

Ubiquitin specific peptidase 7 (USP7) is a deubiquitinating enzyme (DUB) that removes ubiquitin tags from specific protein substrates in order to alter their degradation rate and sub-cellular localization. USP7 has been proposed as a therapeutic target in several cancers because it has many reported substrates with a role in cancer progression, including FOXO4, MDM2, N-Myc, and PTEN. The multi-substrate nature of USP7, combined with the modest potency and selectivity of early generation USP7 inhibitors, has presented a challenge in defining predictors of response to USP7 and potential patient populations that would benefit most from USP7-targeted drugs. Here, we describe the structure-guided development of XL177A, which irreversibly inhibits USP7 with sub-nM potency and selectivity across the human proteome. Evaluation of the cellular effects of XL177A reveals that selective USP7 inhibition suppresses cancer cell growth predominantly through a p53-dependent mechanism: XL177A specifically upregulates p53 transcriptional targets transcriptome-wide, hotspot mutations in TP53 but not any other genes predict response to XL177A across a panel of ~500 cancer cell lines, and TP53 knockout rescues XL177A-mediated growth suppression of TP53 wild-type (WT) cells. Together, these findings suggest TP53 mutational status as a biomarker for response to USP7 inhibition. We find that Ewing sarcoma and malignant rhabdoid tumor (MRT), two pediatric cancers that are sensitive to other p53-dependent cytotoxic drugs, also display increased sensitivity to XL177A.


Subject(s)
Protease Inhibitors/pharmacology , Tumor Suppressor Protein p53/metabolism , Ubiquitin-Specific Peptidase 7/antagonists & inhibitors , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Humans , MCF-7 Cells , Protease Inhibitors/chemistry , Ubiquitin-Specific Peptidase 7/chemistry , Ubiquitin-Specific Peptidase 7/metabolism , Ubiquitination/drug effects
3.
Cancer Cell ; 34(6): 922-938.e7, 2018 12 10.
Article in English | MEDLINE | ID: mdl-30537514

ABSTRACT

Drug resistance represents a major challenge to achieving durable responses to cancer therapeutics. Resistance mechanisms to epigenetically targeted drugs remain largely unexplored. We used bromodomain and extra-terminal domain (BET) inhibition in neuroblastoma as a prototype to model resistance to chromatin modulatory therapeutics. Genome-scale, pooled lentiviral open reading frame (ORF) and CRISPR knockout rescue screens nominated the phosphatidylinositol 3-kinase (PI3K) pathway as promoting resistance to BET inhibition. Transcriptomic and chromatin profiling of resistant cells revealed that global enhancer remodeling is associated with upregulation of receptor tyrosine kinases (RTKs), activation of PI3K signaling, and vulnerability to RTK/PI3K inhibition. Large-scale combinatorial screening with BET inhibitors identified PI3K inhibitors among the most synergistic upfront combinations. These studies provide a roadmap to elucidate resistance to epigenetic-targeted therapeutics and inform efficacious combination therapies.


Subject(s)
Azepines/pharmacology , Drug Resistance, Neoplasm/drug effects , Indazoles/pharmacology , Molecular Targeted Therapy/methods , Neuroblastoma/drug therapy , Sulfonamides/pharmacology , Triazoles/pharmacology , Xenograft Model Antitumor Assays , Animals , Cell Line, Tumor , Disease-Free Survival , Epigenesis, Genetic/drug effects , Female , Humans , Mice, Nude , Neuroblastoma/genetics , Neuroblastoma/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors , Proteins/antagonists & inhibitors , Proteins/metabolism , Signal Transduction/drug effects
4.
J Exp Med ; 215(8): 2137-2155, 2018 08 06.
Article in English | MEDLINE | ID: mdl-30045945

ABSTRACT

Ewing sarcoma is a pediatric cancer driven by EWS-ETS transcription factor fusion oncoproteins in an otherwise stable genomic background. The majority of tumors express wild-type TP53, and thus, therapies targeting the p53 pathway would benefit most patients. To discover targets specific for TP53 wild-type Ewing sarcoma, we used a genome-scale CRISPR-Cas9 screening approach and identified and validated MDM2, MDM4, USP7, and PPM1D as druggable dependencies. The stapled peptide inhibitor of MDM2 and MDM4, ATSP-7041, showed anti-tumor efficacy in vitro and in multiple mouse models. The USP7 inhibitor, P5091, and the Wip1/PPM1D inhibitor, GSK2830371, decreased the viability of Ewing sarcoma cells. The combination of ATSP-7041 with P5091, GSK2830371, and chemotherapeutic agents showed synergistic action on the p53 pathway. The effects of the inhibitors, including the specific USP7 inhibitor XL-188, were rescued by concurrent TP53 knockout, highlighting the essentiality of intact p53 for the observed cytotoxic activities.


Subject(s)
CRISPR-Associated Protein 9/metabolism , CRISPR-Cas Systems/genetics , Genome, Human , Sarcoma, Ewing/genetics , Tumor Suppressor Protein p53/genetics , Aminopyridines/pharmacology , Animals , Cell Death/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival , Dipeptides/pharmacology , Drug Synergism , Female , Humans , Mice, Nude , Mutation/genetics , Neoplasm Proteins/metabolism , Peptides, Cyclic/pharmacology , Reproducibility of Results , Sarcoma, Ewing/pathology , Thiophenes/pharmacology , Transcription, Genetic/drug effects , Xenograft Model Antitumor Assays
5.
Cancer Cell ; 33(2): 202-216.e6, 2018 02 12.
Article in English | MEDLINE | ID: mdl-29358035

ABSTRACT

Many cancer types are driven by oncogenic transcription factors that have been difficult to drug. Transcriptional inhibitors, however, may offer inroads into targeting these cancers. Through chemical genomics screening, we identified that Ewing sarcoma is a disease with preferential sensitivity to THZ1, a covalent small-molecule CDK7/12/13 inhibitor. The selective CDK12/13 inhibitor, THZ531, impairs DNA damage repair in an EWS/FLI-dependent manner, supporting a synthetic lethal relationship between response to THZ1/THZ531 and EWS/FLI expression. The combination of these molecules with PARP inhibitors showed striking synergy in cell viability and DNA damage assays in vitro and in multiple models of Ewing sarcoma, including a PDX, in vivo without hematopoietic toxicity.


Subject(s)
Cyclin-Dependent Kinases/drug effects , Phenylenediamines/pharmacology , Proto-Oncogene Protein c-fli-1/genetics , Pyrimidines/pharmacology , RNA-Binding Protein EWS/genetics , Sarcoma, Ewing/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Cyclin-Dependent Kinases/genetics , Gene Expression Regulation, Neoplastic/drug effects , Humans , Oncogene Proteins, Fusion/drug effects , Oncogene Proteins, Fusion/genetics , Proto-Oncogene Protein c-fli-1/drug effects , RNA-Binding Protein EWS/drug effects , Synthetic Lethal Mutations/drug effects , Synthetic Lethal Mutations/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...